Understanding & Solving Heat Transfer Equipment Stall

heat transfer equipment
Heat transfer loop
Stall can most easily be defined as a condition in which heat transfer equipment is unable to drain condensate and becomes flooded due to insufficient system pressure.

Stall occurs primarily in heat transfer equipment where the steam pressure is modulated to obtain a desired output (i.e. product temperature). The pressure range of any such equipment ( coils, shell & tube, etc....) can be segmented into two (2) distinct operational modes, Operating and Stall.

Operating: In the upper section of the pressure range the operating pressure (OP) of the equipment is greater than the back pressure (BP) present at the discharge of the steam trap. Therefore a positive pressure differential across the trap exists allowing for condensate to flow from the equipment to the condensate return line.

Stall: In the lower section of the pressure range the operating pressure (OP) of the equipment is less than or equal to the back pressure (BP) present at the discharge of the steam trap. Therefore a negative or no pressure differential exists, this does not allow condensate to be discharged to the return line and the condensate begins to collect and flood the equipment.

You can read the entire Armstrong technical paper below.

Visit this link to download your own copy of Armstrong Fluid Handling: Understanding and Solving Equipment Stall.

Applying the ASCO 212 Composite Solenoid Valve for Reverse Osmosis Water Systems

ASCO Mead O'Brien Series 212
ASCO Series 212 Composite Solenoid Valves
for Reverse Osmosis Water Systems
Reverse osmosis (RO) is one of the most popular methods for effective water purification. It has been used for years to purify contaminated water, including converting brackish or seawater to drinking water.

Reverse osmosis is a process in which dissolved inorganic solids (such as salts) are removed from a solution (such as water). This is accomplished by pushing the water through a semi permeable membrane, which allows only the water to pass, but not the impurities or contaminates.

Reverse Osmosis can deliver bottled-water quality safety and taste by removing over 99% of dissolved minerals, chlorine and contaminants. Many leading bottled-water companies actually use large-scale RO to produce their water.

Reverse osmosis systems are found in several drinking water applications from restaurant, food and beverage equipment to grocery store produce misting.

The ASCO Series 212 solenoid valve is designed for these type systems. The valves come with NSF approvals for use in drinking water systems and also is design with unique “FasN” quick connection system. The valves are designed to handle 150 psi up to 180 deg. F. and has low wattage coils in both AC and DC.

See the video below for an illustration of where these valves are used in RO systems.

Foxboro Vortex Flow Meters

Foxboro vortex flow meterThe patented family of Foxboro vortex flowmeters has the high accuracy and rangeability of positive displacement and turbine flowmeters without the mechanical complexity and high cost. Maximum rangeability up to 100:1 is possible as compared to 3:1 for a nonlinear differential pressure producer (orifice plate).

Because these Flowmeters have no moving parts, they are very durable and reliable. This simplicity of design ensures low initial cost, low operating and maintenance costs, and therefore contributing to an overall low cost of ownership.



For more information, contact:

Mead O'Brien
(800) 892-2769

Traps for Sour Gas Service

Armstrong Series 300
Armstrong Series 300
What is “sour gas”? 

In the oil and gas industry, “sour gas” refers to natural gas that is contaminated with hydrogen sulfide (H2S or “sulfide”). “Sour crude,” similarly, is crude oil that contains hydrogen sulfide. These are naturally occurring conditions, but definitely not desirable. Aside from the environmental pollution problems with “high-sulfur” fuels, there are some serious corrosion problems that can affect many materials. Liquid drainers (drain traps) and strainers are the most common Armstrong products ordered for sour gas service. A few other products are sometimes specified, notably inverted bucket air traps. An inquiry may be accompanied by an extensive specification of H2S concentrations; there may be a line indicating “Sour Gas Service;” or may only be the note “NACE.” This is a reference to Standard MR0175-93 published by the National Association of Corrosion Engineers (NACE).

What is the problem? 

H2S under pressure permeates into the crystalline structure of the metal and strains the structure of the crystal. This reduces its ability to deform in a ductile manner. The net effect is to make the material brittle. In the presence of external stresses due to applied pressure or loads, or internal stresses due to cold working or welding, parts may fail by cracking without any warning. This process is called Sulfide Stress Cracking (SSC). SSC is affected by many parameters, including: · Composition, strength, heat treatment, and microstructure of the material; · Hydrogen ion concentration (pH) of the environment; · Hydrogen sulfide concentration and total pressure; · Total tensile stress; · Time and temperature. Choice of products and their limitations. Inverted bucket traps (primarily for air trap service) should be selected from the Series 300 traps. The bucket and mechanism (except valve and seat) will be annealed to eliminate the locked-in stresses from the stamping operations. The valve and seat will be made from Type 316 stainless, without additional heat treatment. Cast iron bucket weights are permitted, since they are not stressed in tension. Special bolting is required only if the sour environment is also outside the trap.

Download the Sour Gas Trap Selection Guide Here

Mead O'Brien VP Elevated to ISA Fellow

ISA Fellows 2016
ISA Fellows 2016
The International Society of Automation (www.isa.org) is a nonprofit professional association that sets the standard for those who apply engineering and technology to improve the management, safety, and cybersecurity of modern automation and control systems used across industry and critical infrastructure. It currently boasts 40,000 members worldwide.

Steve Huffman
Steve Huffman
Elevation to the distinguished grade of ISA Fellow is granted to Senior Members in recognition of their exceptional engineering scientific contributions to the field of automation.

Steve Huffman, VP of Sales and Marketing at Mead O'Brien will be one of the honorees at the 54th Annual ISA Honors & Awards Gala to be held on 24 September 2016 in Newport Beach, California.

Steve is being recognized for leading the effort to create the US Department of Labor’s Automation Competency Model for automation professionals.

Congratulations to Steve for this achievement and for his many years of service to the instrumentation and automation community.

Your Career in Process Automation May Just Save The World

process automation careers

Did the title get your attention?

Here's a thesis for you to consider: People entering the workforce who are interested in meaningful careers should strongly consider industrial control and automation.




Wouldn't you like a career where you could:
  • Help solve world energy
  • Help provide clean water
  • Help solve world hunger
  • Help clean and sustain the environment
  • Help meet chemical & mineral needs
  • Help provide material goods
It's a bold statement, but there's truth that engineering careers in manufacturing automation will contribute to the solutions of some of the world's most significant challenges.

The following presentation by Steve Huffman, Vice President of Mead O'Brien and Chairman of Government Relations for the Automation Federation, provides an interesting argument about the importance of people in the changing world of process automation. Enjoy.


A Guide to Instrumentation for Ethanol Fuel Production

ethanol plant
Ethanol plant
Ethanol, the common name for ethyl alcohol, is fuel grade alcohol that is produced through the fermentation of simple carbohydrates by yeasts. Fueled by growing environmental, economic, and national security concerns, U.S. ethanol production capacity has nearly doubled in the past six years, and the Renewable Fuel Association (RFA) projects another doubling of the industry by 2012. Ethanol can be made from renewable feedstock’s such as grain sorghum, wheat, barley, potatoes, and sugar cane. In the United States, the majority of the ethanol is produced from corn.

The two main processes to produce ethanol from corn are wet milling and dry milling.
Foxboro transmitter
Foxboro transmitter


Wet milling is more versatile as it produces a greater variety of products, including starch, corn syrup, and sucralose (such as Splenda®). However, with this versatility come higher costs in mill design, building, and operation. If ethanol is the primary product produced, dry mills offer the advantages of lower construction and operations costs, with improved production efficiency. Of the more than 70 U.S. ethanol plants currently being built, only a few are wet mills.

The efficiency of ethanol production has come a long way during the last 20 years. As more large-scale facilities come on line, ethanol producers are faced with the growing challenge of finding innovative ways to maintain profitability while this market matures. An increasingly accepted solution is process automation to assist ethanol producers in controlling product quality, output, and costs. Because sensing and analytical instrumentation represents what is essentially the eyes and ears of any automation system, careful evaluation of instrumentation, at the design phase can reduce both equipment and operating costs significantly, while improving overall manufacturing effectiveness.

The following document, courtesy of Foxboro, provides a good overview of instrumentation and the production of ethanol.

Limitorque Blue Ribbon Service by Mead O'Brien

Limitorque factory trained technicians, support and parts.  It's only factory authorized when the work is done by a Blue Ribbon Repair Center.

Your Limitorque actuators were a major investment. Don't take chances with an unknown. Choose only a Flowserve Limitorque Blue Ribbon Distributor to assure you're getting factory authorized service. It's just not worth the risk.


What is this “steam” thing?

Reprinted with permission from InTech Magazine March-April Issue
Author: Steve Huffman VP Marketing & Business Development, Mead O'Brien

This article began as a coy reply to Bill Lydon’s interesting “Talk to Me” column (www.isa.org/intech/201512talk) about Leonardo da Vinci’s accomplishments as an artist applying engineering principles to create engineered works of art. Lydon noted that da Vinci saw science and art as complementary rather than as distinct disciplines. I stated that the word “STEAM,” really STEM + art, was not a new concept. The most recent iteration started sometime within the first decade of the 21st century, gaining traction with the efforts of such influencers as the Rhode Island School of Design beginning in 2010. Lawmakers with whom the Automation Federation met while advocating for our profession on Capitol Hill saw the concept as a way to reach elementary school children who would not otherwise be interested in math, science, and engineering.

My point was why use the word “steam” and create confusion with the engine of the American industrial revolution—and still the most efficient turbine driver and heat transfer media in prominent use to this day? Ironically, I find a declining knowledge base regarding steam systems used in industry, especially in process control, as the baby boomers are now retiring at very high levels. New practitioners, automation or otherwise, who either work on or are charged with engineering or maintaining these utility systems for process are generally not well prepared from a knowledge or educational perspective. This issue really adds to the negative financial impact that poorly designed or poorly maintained steam systems contribute to product quality, throughput, and energy loss.

For the artistic, it seems someone should have realized that the word, with all its thermodynamic glory, was already taken. So is it right to add “art” to the critical-thinking process of STEM and to the engineering curriculum to add another dimension to the student’s education? A number of artists and engineers disagree, but mainly because they only view their “discipline” as a tool that makes the other “discipline” superior. In short, it does go both ways, and purists on both sides probably resent that art and engineering go together. Because we come from the engineering side of the fence, I feel that art probably does broaden the horizons of engineers, but bringing art into engineering certainly does nothing to diminish art in and of itself. As art teaches us, there are many ways to comprehend the same thing.

In my own experience with the brewing industry in St. Louis over the past 40 years, the process mix includes engineering, science, and the application of the art of brewing, which goes back to the ancient Greeks. Modern brewing evolved over the past 150 years with people from those disciplines working together, some even using the “glue” of automation to turn their processes into highly automated, high production, and sophisticated dynamos with dozens of new products released yearly, all of them starting with four basic ingredients.

I project that art in STEM (STEM+A if I were chief acronym maker) is absolutely necessary for automation professionals to better appreciate process and better visualize what the future holds. It is also essential for thinking more abstractly, and in homage to the next big thing, developing a critical eye to analyze, put to practical use, and translate from “production-speak” to meaningful “management-speak” the massive amount of data coming our way with the Industrial Internet of Things revolution of which we are on the cusp. Dealing with disruptive technologies in process and factory automation will require digital skills far in excess of what we can even see on the horizon today. It seems that steam may be creating some buzz, but in the future the real kinetic energy will be created by digital engineers.

Wireless Monitoring Technology Keeps Watchful Eye on Steam Trap Operation

Model ST5700
Model ST5700
The Armstrong Intelligent Monitoring Model ST5700 is a wireless monitoring technology that efficiently monitors and evaluates steam trap operation. It identifies the conditions of a steam trap to determine significant problems that could put your operation at risk and can accurately detect potential issues such as plugged and blow thru steam traps. 

The AIM®ST5700 helps identify the root cause while you minimize production losses and reduce energy consumption. Using non-intrusive technology combined with WirelessHART, the AIM®ST5700 is the ideal solution for any temporary or permanent 24/7 steam trap monitoring.

For more on its operation and use, please read the document below.

For more information, contact:
Mead O'Brien
www.meadobrien.com
(800) 892-2769

A Quick Primer on Hazardous Area Enclosures

explosion proof enclosures
Understanding explosion proof enclosures
In electrical engineering terms, "explosion-proof" or "hazardous" areas are defined as locations where the possibility of fire or explosion exists because of the presence of flammable gasses, liquids, vapors, dusts, or fibers. As a result, electrical equipment must be installed in such a way where any electrical current or signal; a) does not provide enough energy to support an electrical arc (intrinsically safe); or b) is contained in an enclosure and associated conduit that are designed to suppress further ignition by sufficiently cooling escaping gases.

So its important to understand that when describing hazardous area enclosures, "explosion-proof" doesn't mean the enclosure can withstand the forces of an external explosion, but rather that the enclosure is designed to cool any escaping hot gases (caused by an internal spark or arcing contacts) sufficiently enough as to not to allow the ignition of combustible gases or dusts in the surrounding area.

This is a short video that explains what an explosion-proof enclosure looks like, how it works, and why it is safe to use in explosive or combustible atmospheres.

For more information on electrical equipment in hazardous areas visit this page.


Courtesy of Mead O'Brien
(800) 892-2769

Flowserve Limitorque Actuators: General Safety Precautions and Practices

Limitorque actuator
Limitorque multi-turn actuator.
The following are general guidelines for safely operating Limitorque actuators. This post is intended to supplement Flowserve / Limitorque's ongoing efforts to provide information on the safe and proper use of electric valve actuators on industrial globe, gate, ball, butterfly and plug valves.  It is critically important to always refer to the installation & maintenance manual before applying, installing and servicing Limitorque actuators. If unsure about any of the recommended safety or installation procedures, contact a factory authorized technician before going any further.

More than 1 million Limitorque actuators have been installed around the world, and some have been in operation for more than 50 years. The ruggedness and reliability of Limitorque electric actuators are among the primary reasons that customers continue to select Limitorque products.

Actuators requiring 90° of rotation to operate are necessary for quarter-turn valves such as ball, butterfly, plug and dampers, and rotary control valves. These types of Limitorque electric actuators are available for operations such as open-close, modulating, network and rotary service.

Multi-turn actuators are required to operate various types of rising stem valves such as gate, slide-gates, globe, check and linear control valves. These types of Limitorque electric actuators are available for operations such as open-close, modulating, network and linear service.

General Safety Precautions
  1. Warning: Read the Installation and Maintenance Manual carefully and completely before attempting to install, operate, or troubleshoot the Limitorque actuator.
  2. Warning: Be aware of electrical hazards. Turn off incoming power before working on the actuator and before opening the switch compartment.
  3. Warning: Potential HIGH PRESSURE vessel — be aware of high-pressure hazards associated with the attached valve or other actuated device when installing or performing maintenance on the actuator. Do not remove the actuator mounting bolts from the valve or actuated device unless the valve or device stem is secured or there is no pressure in the line.
  4. Warning: For maintenance and/or disassembly of the actuator while installed on the valve, ensure that the actuator is not under thrust or torque load. If the valve must be left in service, the valve stem must be locked in such a way as to prevent any movement of the valve stem.
  5. Warning: Do not attempt to remove the spring cartridge cap, housing cover, or stem nut locknut from the actuator while the valve or actuated device is under load.
  6. Warning: Do not manually operate the actuator with devices other than the installed handwheel and declutch lever. Using force beyond the ratings of the actuator and/or using additive force devices such as cheater bars, wheel wrenches, pipe wrenches, or other devices on the actuator handwheel or declutch lever may cause serious personal injury and/or damage to the actuator and valve.
  7. Warning: Do not exceed any design limitations or make modifications to this equipment without first consulting Limitorque.
  8. Warning: Actuators equipped with electrical devices (motors, controls) requiring field wiring must be wired and checked for proper operation by a qualified tradesman.
  9. Warning: Use of the product must be suspended any time it fails to operate properly.
  10. Caution: Do not use oversized motor overload heaters. Instead, look for the cause of the overload.
  11. Caution: Do not operate the valve under motor operation without first setting or checking the limit switch setting and motor direction.
  12. Caution: Do not force the declutch lever into the motor operation position. The lever returns to this position automatically when the motor is energized.
  13. Caution: Do not depress the declutch lever during motor operation to stop valve travel.
  14. Caution: Do not use replacement parts that are not genuine Flowserve Limitorque parts, as serious personal injury and/or damage to the actuator and valve may result.
  15. Caution: Do not lift actuator/gearbox or actuator/valve combinations with only the eye bolts in the SMB actuator. These eye bolts are designed for lifting the SMB actuator only.
General Safety Practices

The following check points should be performed to maintain safe operation of the actuator:
  1. Eye bolts in SMB and SB actuators are designed for lifting only the actuator and not associated gearboxes or valves.
  2. Mount the actuator with the motor in a horizontal plane, if possible.
  3. Keep the switch compartment clean and dry.
  4. Keep the valve stem clean and lubricated.
  5. Set up a periodic operating schedule for infrequently used valves.
  6. Verify all actuator wiring is in accordance with the applicable wiring diagram.
  7. Carefully check for correct motor rotation direction. If the valve closes when open button is pushed, the motor leads may have to be reversed.
  8. Verify the stem nut is secured tightly by the locknut and that the top thread of the locknut is crimped or staked in two places.
  9. Use a protective stem cover. Check valve stem travel and clearance before mounting covers on rising stem valves.

Authorized Blue Ribbon Limitorque Parts & Service
Mead O'Brien Authorized
Blue Ribbon Limitorque Parts & Service
For more information, or if you need field support with any Limitorque actuator, parts, or service, contact one of the following Mead O'Brien offices: 


Mead O’Brien, Inc.
10800 Midwest Industrial Blvd
St. Louis, Missouri 63132
(314) 423-5161

Mead O’Brien, Inc.
1429 Atlantic
North Kansas City, MO 64116
(816) 471-3993

Mead O’Brien, Inc.
16 South Main Street
PO Box 1086
Calvert City, Kentucky 42029-1086
(270) 395-7330

Mead O’Brien, Inc.
824 West Elgin
Broken Arrow, Oklahoma 74012
(918) 251-1588

A Better Alternative to Magmeter for Unpolished Condensate Flow Measurement

Veris Accelabar
Veris Accelabar 
A large University was using magnetic flowmeters (Magmeters) to measure the flow of boiler feed water downstream of a condensate polisher. There were occasional system upsets that required the condensate polisher to be bypassed. When this happened, large amounts of debris would be released downstream and pass directly through the Magmeter, causing a build-up of foreign material on the internal sensing surfaces.

A magnetic flowmeter uses an electric current applied to a coil which produces a magnetic field. When conductive liquid flows through the magnetic field, a small voltage, proportional to the liquid velocity, is induced. As long as the interior surfaces of the Magmeter are clean and unobstructed, the meter accurately measures flow. If they get dirty or coated, all bets are off.

It was in the above mentioned upset situations where the University maintenance people were having problems. When upsets occurred, and the condensate polisher had to be by-passed, it meant the Magmeter would also have to be serviced because accuracy could no longer be guaranteed. Servicing the Magmeter was slow and costly. It meant shutting down the line, draining the pipe, removing the flowmeter, cleaning, and then putting it all back together.

Armstrong International’s Veris Group was called in for a consult. After review,  the Veris Group recommended installing an Accelabar® flow meter to offer an alternative solution that could provide reliable flow measurement regardless of an upset condition like unpolished condensate. The Accelabar provided a flow range of 22.5:1 turndown in flow, in a limited straight run scenario. In the past, two transmitters were required to provide the best accuracy across the entire range of the Accelabar. Veris was able to use the Foxboro IDP 10S with its FoxCal™ technology in order to have a combined percent of rate accuracy solution.

The new transmitter installation has 11 separate calibrations loaded into the device. As the differential pressure from the primary element is measured, the transmitter chooses the correct calibration curve. Veris’ solution delivered performance that was previously unattainable with a single differential pressure transmitter.

The Accelabar and Foxboro combined to be best solution, and the Accelabar flow meter is now the University's standard for the boiler feed water measurements.

For more information, contact:

Mead O'Brien, Inc.
10800 Midwest Industrial Blvd
St Louis,  MO 63132
314-423-5161
314-423-5707
www.meadobrien.com

Choose Guided Wave Radar for Your Challenging Process Level Application

Guided Wave Radar transmitters (GWR)
Guided Wave
Radar Transmitter
Courtesy of
Foxboro/Schneider
Electric
Designed to perform continuous level measurement in a wide range of industries and applications, Guided Wave Radar transmitters (GWR) are unaffected by changes in temperature, specific gravity, pressure and with no need to recalibrate, offering a highly available measurement at low maintenance cost. GWR transmitters provide level measurement solutions in a variety of process applications, providing a universal radar measurement solution for all liquids including corrosive, viscous, sticky and other difficult media such as foam and turbulent surfaces, and solids.

Electromagnetic pulses are emitted and guided along a probe.  These pulses are reflected back at the product surface.  The distance is calculated by measuring this transit time. This device is perfect for high-end applications.  It is suitable for applications with foam, dust, vapor, agitated, turbulent or boiling surfaces with rapid level changes.

Common features include:
Easy configuration via digital communication; Wide selection of materials facilitates service under harsh/corrosive conditions; Solutions for density/pressure variations and rapid level changes; Empty Tank Spectrum filtering; Quick Noise scanning reduces false radar reflections.

Applications: Steam Generation /Boiler Drum; Oil/Water Separator; BioDiesel Production; Overflow Protection; Interface and Density; Process tanks; Storage tanks; Polyester/Nylon fiber production; Claus Process


For more information on Guided Wave Radar level instruments, contact:

Mead O'Brien
(800) 892-2769
www.meadobrien.com

Part 3: What Steam Is, How Steam is Used, and the Properties of Steam

Mead O'Brien Steam Experts
Mead O'Brien Steam Experts
Steam is the gaseous phase (state) of water and has many domestic, commercial, and industrial uses. There are two categories of steam - wet steam and dry steam. In dry steam, all the water molecules stay in the gaseous state. In wet steam, some of the water molecules have released their energy (latent heat) and begin condensing into water droplets.

Steam, usually created by a boiler burning coal or other fuels, became the primary source of energy for mechanical movement during the industrial revolution, ultimately being replaced by fossil fuels and electricity.

Steam has many commercial and industrial uses. In agricultural, steam is used to remediate and sterilize soil. In power generation, approximately 90% of our electricity is created using steam as the working fluid to spin turbines. Autoclaves use steam for sterilization in microbiology labs, research, and healthcare facilities. Many commercial and industrial pieces of equipment are cleaned with steam. Finally, commercial complexes, campuses and military buildings use steam for heat and humidification.

The following video, the FINAL part of a three part series titled “What Steam Is, How Steam is Used, and the Properties of Steam” provides the viewer with an exceptional basis to build from. Special thanks to Armstrong International who created the original work.



For more information on any industrial or commercial steam application, contact:

Mead O'Brien, Inc.
(800) 892-2769

Part 2: What Steam Is, How Steam is Used, and the Properties of Steam

Use of Steam
Steam is the gaseous phase (state) of water and has many domestic, commercial, and industrial uses. There are two categories of steam - wet steam and dry steam. In dry steam, all the water molecules stay in the gaseous state. In wet steam, some of the water molecules have released their energy (latent heat) and begin condensing into water droplets.

Steam, usually created by a boiler burning coal or other fuels, became the primary source of energy for mechanical movement during the industrial revolution, ultimately being replaced by fossil fuels and electricity.

Steam has many commercial and industrial uses. In agricultural, steam is used to remediate and sterilize soil. In power generation, approximately 90% of our electricity is created using steam as the working fluid to spin turbines. Autoclaves use steam for sterilization in microbiology labs, research, and healthcare facilities. Many commercial and industrial pieces of equipment are cleaned with steam. Finally, commercial complexes, campuses and military buildings use steam for heat and humidification.

The following video, the second part of a three part series titled “What Steam Is, How Steam is Used, and the Properties of Steam” provides the viewer with an exceptional basis to build from. Special thanks to Armstrong International who created the original work.



For more information on any industrial or commercial steam application, contact:

Mead O'Brien, Inc.
(800) 892-2769

Part 1: What Steam Is, How Steam is Used, and the Properties of Steam

Steam is the gaseous phase (state) of water and has many domestic, commercial, and industrial uses. There are two categories of steam - wet steam and dry steam. In dry steam, all the water molecules stay in the gaseous state. In wet steam, some of the water molecules have released their energy (latent heat) and begin condensing into water droplets.

Steam, usually created by a boiler burning coal or other fuels, became the primary source of energy for mechanical movement during the industrial revolution, ultimately being replaced by fossil fuels and electricity.

Steam has many commercial and industrial uses. In agricultural, steam is used to remediate and sterilize soil. In power generation, approximately 90% of our electricity is created using steam as the working fluid to spin turbines. Autoclaves use steam for sterilization in microbiology labs, research, and healthcare facilities. Many commercial and industrial pieces of equipment are cleaned with steam. Finally, commercial complexes, campuses and military buildings use steam for heat and humidification.

The following video, the first part of a three part series titled “What Steam Is, How Steam is Used, and the Properties of Steam” provides the viewer with an exceptional basis to build from. Special thanks to Armstrong International who created the original work.


For more information on any industrial or commercial steam application, contact:

Mead O'Brien, Inc.
www.meadobrien.com
(800) 892-2769

Coriolis Flowmeter Reduces Sucrose Losses with Better Molasses Production at Sugar Mill

Molasses Production at Sugar Mill
Molasses Production at Sugar Mill
A sugar mill typically loses between one and two percent of its incoming sucrose to factors such as poor clarification, sugar crystal elongation, reduced crystal growth rates, filter cake loss, and loss to molasses. Of these, loss to molasses is most significant — and one of the most difficult to prevent. Loss to molasses results from inaccurate flow measurement that causes more than the required amount of sucrose to pass into the molasses recipe. Wasting valuable sucrose can directly affect profitability of molasses batch yields, so new strategies to control this loss are constantly being investigated.

Improved control begins with a reliable measurement of molasses production, but getting that is indeed a challenge. Estimating undetermined sugar loss to within 0.1 percent, for example, requires molasses loss measurement that is accurate to at least one percent.

There are a number of methods that have been employed to measure molasses quantities in sugar mills around the world, each with distinct advantages and limitations. Measuring storage tank levels on a regular basis is probably the simplest method, but readings are inconsistent and unreliable. The error in the mass estimate affects the undetermined loss directly. Further complicating accuracy are chemical reactions that produce carbon dioxide, which affects both density and tank levels.

Another method is production tank dipping, which involves detecting changes in ow based on changes in torque at various measurement points. While this may be adequate for reporting on a volume basis, most molasses production balance is based on mass. Also, molasses is usually aerated, which creates two-phase flow conditions, further compromising density and accuracy.

Foxboro Coriolis Flowmeter
Foxboro Coriolis Flowmeter
Engineers at this sugar mill compared measurements made by tank dipping and batch weighing to conventional and digital Coriolis measurements at various points over a three-year period. Years earlier, they installed a competitor’s conventional Coriolis meter. Shortly after, they installed a Foxboro CFT50 digital Coriolis transmitter from Foxboro in series with the existing unit. The Foxboro meter uses digital flowtube control that overcomes flow interruption or stalling caused by two-phase flow. And finally, a short time later, as a benchmark for accuracy, they installed a set of molasses batch scales. Valve leaks notwithstanding, they assumed that the scales would provide the most faithful measure of flow.

The measurements from tank dipping were ten to fifteen percent lower than estimates obtained from either of the Coriolis meters tested.

Later, with the batch scales installed, both Coriolis meters recorded consistently higher estimates than the scales readings. On average, the Foxboro meter gave readings that were three percent higher, and the conventional meter read nine percent higher.

It was clear that the Coriolis meters followed the batch scales much more closely. This strongly indicates the unreliability of tank dipping measurements and suggests that the Coriolis meters are also more responsive to real changes in flow rate. An unanticipated result also indicated that the digital Coriolis meter might be the most responsive to sudden changes in flow rate.

While acknowledging the need for additional study, the researchers concluded that Coriolis measurement is the only suitable alternative to batch scales for measuring sucrose loss to molasses. They found that the conventional Coriolis meter tended to estimate higher than the Foxboro Coriolis meter and that the Foxboro meter had a significantly faster response time in on/off applications.

Conductivity Sensors Improve Biodiesel Production Quality and Production

Biodiesel production improvement
Biodiesel production improvement
with conductivity sensors.
Biofuel products are made from a variety of feedstocks, primarily soybean oil, vegetable oil and animal fat derivatives. Biodiesel is a safe alternative fuel replacement for traditional petroleum diesel.

The biodiesel production process is done through a chemical reaction that combines vegetable oil or animal fat as a raw stock, methanol, and a catalyst of sodium methylate in proper proportions. The process, called transesterification, involves chemically converting triglycerides to smaller methyl esters that resemble diesel fuel with extra oxygen atoms that make it oxygenated diesel fuel enabling it to burn cleaner.

Producing biodiesel fuel is a difficult task that requires precise separation at various stages. Effective separation is critical to the success of the process and the quality of the product.

The plant has four 20,000-gallon reactors and approximately 15 process vessels of various sizes, as well as large field storage tanks used in the delicate separation process.

When emptying the reactors its very important to know exactly where the interface is between the biodiesel and byproducts. If byproducts are left in the fuel, product quality standards are not met and material have to be reprocessed. If your pour out biodiesel, you’re throwing money down the drain.

Conductivity sensors
Conductivity sensors (courtesy of Foxboro)
There are a number of ways to detect phase changes, but conductivity sensing seemed ideal for this application. A conductivity measurement system is relatively inexpensive, very clean and maintenance free, since there are no moving parts.

Foxboro, a world-class manufacturer of process control equipment was called in for a consultation. The initial application is in a batch mode where the company has a pump on the bottom of the reactor. Directly downstream of that pump is a “T” configuration that houses the Foxboro conductivity sensor. At this stage, the biodiesel company needs to separate glycerin, which has a relatively high conductivity, approximately 4,000 to 5,000 microsiemen/cm.  The Foxboro probe monitors the conductivity of the fluid passing by and, as the interface occurs, it immediately detects a dramatic drop in conductivity because the methyl ester phase has a conductivity of less than 20 microsiemen/cm. The conductivity sensor then triggers a signal to stop the pump and close the valve. The remainder of what is in the reactor is methyl ester that contains contaminants including excess methanol, glycerin, soaps, catalyst and other impurities.

The second application involves removing these components from the biodiesel fuel before it can be released as a final product. The crude biodiesel is mixed with water to scrub out the impurities, and then the water is allowed to settle to the bottom of the reactor. Because wash water has a high conductivity of about 2,500 microsiemen/cm, the Foxboro sensors can immediately detect the interface between methyl ester and wash water.

After the washing, the biodiesel goes to the final phase where a vacuum dehydrator warms the wet biodiesel and draws out any residual water. In this third application the Foxboro conductivity sensing probe is used to determine when the appropriate amount of water is removed. At that point what remains is finished biodiesel fuel.

Conductivity sensing technology allowed the successful automation of critical phase separation processes and will allow additional and ongoing process improvements such as automated and continuous processing, and further improvements in production efficiencies and more consistent product quality are expected.

Types of Pressure Measurements Used in Process Control

Ashcroft pressure gauge
Pressure gauge
(courtesy of Ashcroft)
Pressure, the measure of a force on a specified area, is a straightforward concept, however, depending on the application, there are many different ways of interpreting the force measurement.

As with any type of measurement, results need to be expressed in a defined and clear way to allow everyone to interpret and apply those results correctly. Accurate measurements and good measurement practices are essential in industrial automation and process environments, as they have a direct effect on the success of the desired outcome.

When measuring pressure, there are multiple units of measurement that are commonly used. Most of these units of measurement can be used with the international system of units, such as kilo, Mega, etc.

This white paper (courtesy of Turck) will identify the various units of pressure measurement, while discussing when and why certain pressure measurements are used in specific applications.

Cybersecurity: Seven Steps to Effectively Defend Industrial Control Systems

Industrial Cybersecurity
Seven steps toward industrial cybersecurity.
Cyber intrusions into US Critical Infrastructure systems are happening with increased frequency. For many industrial control systems (ICSs), it’s not a matter of if an intrusion will take place, but when. In Fiscal Year (FY) 2015, 295 incidents were reported to ICS-CERT, and many more went unreported or undetected. The capabilities of our adversaries have been demonstrated and cyber incidents are increasing in frequency and complexity. Simply building a network with a hardened perimeter is no longer adequate. Securing ICSs against the modern threat requires well-planned and well-implemented strategies that will provide network defense teams a chance to quickly and effectively detect, counter, and expel an adversary. This paper presents seven strategies that can be implemented today to counter common exploitable weaknesses in “as-built” control systems.

If system owners had implemented the strategies outlined in this paper, 98 percent of incidents ICS-CERT responded to in FY 2014 and FY 2015 would have been prevented. The remaining 2 percent could have been identified with increased monitoring and a robust incident response.

1. IMPLEMENT APPLICATION WHITELISTING

Application Whitelisting (AWL) can detect and prevent attempted execution of malware uploaded by adversaries. The static nature of some systems, such as database servers and human-machine interface (HMI) computers, make these ideal candidates to run AWL. Operators are encouraged to work with their vendors to baseline and calibrate AWL deployments.

Example: ICS-CERT recently responded to an incident where the victim had to rebuild the network from scratch at great expense. A particular malware compromised over 80 percent of its assets. Antivirus software was ineffective; the malware had a 0 percent detection rate on VirusTotal. AWL would have provided notification and blocked the malware execution.

2. ENSURE PROPER CONFIGURATION/PATCH MANAGEMENT

Adversaries target unpatched systems. A configuration/patch management program centered on the safe importation and implementation of trusted patches will help keep control systems more secure.
Such a program will start with an accurate baseline and asset inventory to track what patches are needed. It will prioritize patching and configuration management of “PC-architecture” machines used in HMI, database server, and engineering workstation roles, as current adversaries have significant cyber capabilities against these. Infected laptops are a significant malware vector. Such a program will limit connection of external laptops to the control network and preferably supply vendors with known-good company laptops. The program will also encourage initial installation of any updates onto a test system that includes malware detection features before the updates are installed on operational systems.

Example: ICS-CERT responded to a Stuxnet infection at a power generation facility. The root cause of the infection was a vendor laptop.

Use best practices when downloading software and patches destined for your control network. Take measures to avoid “watering hole” attacks. Use a web Domain Name System (DNS) reputation system. Get updates from authenticated vendor sites. Validate the authenticity of downloads. Insist that vendors digitally sign updates, and/or publish hashes via an out-of-bound communications path, and use these to authenticate. Don’t load updates from unverified sources.

Example: HAVEX spread by infecting patches. With an out-of-band communication path for patch hashes, such as a blast email, users could have validated that the patches were not authentic.

3. REDUCE YOUR ATTACK SURFACE AREA

Isolate ICS networks from any untrusted networks, especially the Internet.b Lock down all unused ports. Turn off all unused services. Only allow real-time connectivity to external networks if there is a defined business requirement or control function. If one-way communication can accomplish a task, use optical separation (“data diode”). If bidirectional communication is necessary, then use a single open port over a restricted network path.

Example: As of 2014, ICS-CERT was aware of 82,000 cases of industrial control systems hardware or software directly accessible from the public Internet. ICS-CERT has encountered numerous cases where direct or nearly direct Internet access enabled a breach. Examples include a US Crime Lab, a Dam, The Sochi Olympic stadium, and numerous water utilities.

4. BUILD A DEFENDABLE ENVIRONMENT

Limit damage from network perimeter breaches. Segment networks into logical enclaves and restrict host-to-host communications paths. This can stop adversaries from expanding their access, while letting the normal system communications continue to operate. Enclaving limits possible damage, as compromised systems cannot be used to reach and contaminate systems in other enclaves. Containment provided by enclaving also makes incident cleanup significantly less costly.

Example: In one ICS-CERT case, a nuclear asset owner failed to scan media entering a Level 3 facility. On exit, the media was scanned, and a virus was detected. Because the asset owner had implemented logical enclaving, only six systems were put at risk and had to be remediated. Had enclaving not been implemented, hundreds of hosts would have needed to be remediated.

If one-way data transfer from a secure zone to a less secure zone is required, consider using approved removable media instead of a network connection. If real-time data transfer is required, consider using optical separation technologies. This allows replication of data without putting the control system at risk.

Example: In one ICS-CERT case, a pipeline operator had directly connected the corporate network to the control network, because the billing unit had asserted it needed metering data. After being informed of a breach by ICS-CERT, the asset owner removed the connection. It took the billing department 4 days to notice the connection had been lost, clearly demonstrating that real-time data were not needed.

5. MANAGE AUTHENTICATION

Adversaries are increasingly focusing on gaining control of legitimate credentials, especially those associated with highly privileged accounts. Compromising these credentials allows adversaries to masquerade as legitimate users, leaving less evidence than exploiting vulnerabilities or executing malware. Implement multi-factor authentication where possible. Reduce privileges to only those needed for a user’s duties. If passwords are necessary, implement secure password policies stressing length over complexity. For all accounts, including system and non-interactive accounts, ensure credentials are unique, and change all passwords at least every 90 days.

Require separate credentials for corporate and control network zones and store these in separate trust stores. Never share Active Directory, RSA ACE servers, or other trust stores between corporate and control networks.

Example: One US Government agency used the same password across the environment for local administrator accounts. This allowed an adversary to easily move laterally across all systems.

6. IMPLEMENT SECURE REMOTE ACCESS

Some adversaries are effective at gaining remote access into control systems, finding obscure access vectors, even “hidden back doors” intentionally created by system operators. Remove such accesses wherever possible, especially modems as these are fundamentally insecure.
Limit any accesses that remain. Where possible, implement “monitoring only” access enforced by data diodes, and do not rely on “read only” access enforced by software configurations or permissions. Do not allow remote persistent vendor connections into the control network. Require any remote access be operator controlled, time limited, and procedurally similar to “lock out, tag out.” Use the same remote access paths for vendor and employee connections; don’t allow double standards. Use two-factor authentication if possible, avoiding schemes where both tokens are similar types and can be easily stolen (e.g., password and soft certificate).

Example: Following these guidelines would have prevented the BlackEnergy intrusions. BlackEnergy required communications paths for initial compromise, installation and “plug in” installation.

7. MONITOR AND RESPOND

Defending a network against modern threats requires actively monitoring for adversarial penetration and quickly executing a prepared response.
Consider establishing monitoring programs in the following five key places:
  1. Watch IP traffic on ICS boundaries for abnormal or suspicious communications.
  2. Monitor IP traffic within the control network for malicious connections or content.
  3. Use host-based products to detect malicious software and attack attempts.
  4. Use login analysis (time and place for example) to detect stolen credential usage or improper access, verifying all anomalies with quick phone calls.
  5. Watch account/user administration actions to detect access control manipulation.
Have a response plan for when adversarial activity is detected. Such a plan may include disconnecting all Internet connections, running a properly scoped search for malware, disabling affected user accounts, isolating suspect systems, and an immediate 100 percent password reset. Such a plan may also define escalation triggers and actions, including incident response, investigation, and public affairs activities.
Have a restoration plan, including having “gold disks” ready to restore systems to known good states.

Example: Attackers render Windows®d based devices in a control network inoperative by wiping hard drive contents. Recent attacks against Saudi AramcoTMe and Sony Pictures demonstrate that quick restoration of such computers is key to restoring an attacked network to an operational state.

Defense against the modern threat requires applying measures to protect not only the perimeter but also the interior. While no system is 100 percent secure, implementing the seven key strategies discussed in this paper can greatly improve the security posture of ICSs.

DISCLAIMER

The information and opinions contained in this document are provided “as is” and without any warranties or guarantees. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the United States Government, and this guidance shall not be used for advertising or product endorsement purposes.

ACKNOWLEDGMENT

This document “Seven Steps to Effectively Defend Industrial Control Systems” was written in collaboration, with contributions from subject matter experts working at the Department of Homeland Security (DHS), the Federal Bureau of Investigation (FBI), and the National Security Agency (NSA).

Using Eductors for Non-Powered Tank Mixing

eductor for tank mixing
Eductor for tank mixing
(courtesy of Jacoby Tarbox)
An eductor is a pump that uses a fluid to perform the work of pumping another fluid (or solid). The fluid doing the work is termed the motive fluid, and the fluid being pumped is the suction fluid. The motive fluid employed can be liquid. gas or steam. The suction fluid can be liquid. gas or steam. Other names for eductors include jet pumps, ejectors, Venturi pumps, siphon pumps, steam siphons, and injector pumps. Eductors operate on basic principles of flow dynamics.

Eductors require no power, which means no moving parts. The design of the eductor creates pressure differential allowing fluid to flow naturally within the device - creating suction, mixing, and pushing the liquid throughout the tank.

In-line eductors are the next generation of jet pumps, ejectors, and Venturi pumps providing in-line mixing, pumping, or heating in various process lines. Eductors reduce costs as there are no moving parts and require no direct power.

The video below, while marketing oriented, does a great job at demonstrating how tank mixing is accomplished efficiently and thoroughly with an array of eductors by calculating tank size and volume along with material properties to develop a mixing profile.


For more information, contact:

Mead O'Brien
(800) 892-2769
www.meadobrien.com

Theory of Operation for MOVs (Motor Operated Valves)

Limitorque SMB MOV
Limitorque SMB MOV
This presentation, provided by the NRC, provides an introductory look at motor operated valves, with a focus on the manufacturer Limitorque. The document includes the theory of operation of MOVs, plus descriptions of valve types, such as gate, globe, ball, plug and butterfly.

This document also provides detailed descriptions of Limitorque SMB actuators and Limitorque SB actuators with full assembly and subassembly breakdown and illustrations.




Document provided by NRC.gov

Configuring a Foxboro PH10 Sensor Using the Foxboro 876PH Transmitter

pH Sensors and ORP Sensors
pH and ORP Sensor
(courtesy of Foxboro)
The PH10 DolpHin® Series pH Sensors and ORP10 DolpHin Series ORP Sensors are suitable for a wide range of pH and ORP measurement applications. They are designed for use with Foxboro® brand 875PH, 873PH, and 873DPX Analyzers, and 876PH Intelligent Transmitters and 870ITPH Transmitters. Some can also be used with 873APH Analyzers. When used with 875PH Analyzers or 876PH and 870ITPH Transmitters, they provide the additional capability of on-line diagnostics to signal the user if any of several common sensor faults occur.

The sensors are available with a choice of temperature compensation and cable termination. They are available with an internal pre-amplifer for use up to 150 m (500 ft) and with a Smart sensor for use up to 100 m (328 ft) from the analyzer or transmitter. The sensors can be mounted to the process in a number of ways. They have a 3/4-inch external NPT connection on both the electrode and cable end. The sensors can be inserted directly into the process line or tank or mounted through a variety of accessories including bushings, tees, flow chambers, and ball valves/insertion assemblies.The sensors are available in both analog and Smart versions.

These industry-leading sensors are already proven in countless installations including chemicals, pulp & paper, all kinds of industry and municipal water/wastewater treatment, metals/mining, and food and dairy applications worldwide.

The Foxboro® brand Model 876PH is a 2-wire loop powered intelligent transmitter that, when used with appropriate electrochemical sensors, provides measurement, local display, and transmission of pH, ORP (Oxidation-Reduction Potential), or ISE (Ion Selective Electrode) concentration. The transmitter outputs a HART digital signal and a 4 to 20 mA analog output. Versions are available for use with both analog and Smart (digital) sensors.

This video demonstrates how to correctly configure a Foxboro® PH10 sensor using the Foxboro® 876PH Transmitter.



Form ore information, contact:

Mead O'Brien
www.meadobrien.com
(800) 892-2769

The Rack and Pinion Style Pneumatic Valve Actuator

Automax Actuator
Rack & Pinion Actuator
(courtesy of Flowserve Automax)
Three primary kinds of valve actuators are commonly used: pneumatic, hydraulic, and electric.

Pneumatic actuators can be further categorized as scotch yoke design, vane design, and the subject of this post - rack and pinion actuators.

Rack and pinion actuators provide a rotational movement designed to open and close quarter-turn valves such as ball, butterfly, or plug valves and also for operating industrial or commercial dampers.
internal of rack and pinion actuator

The rotational movement of a rack and pinion actuator is accomplished via linear motion and two gears. A circular gear, referred to a “pinion” engages the teeth of a linear gear “bar” referred to as the “rack”.

Pneumatic actuators use pistons that are attached to the rack. As air or spring power is applied the to pistons, the rack is “pushed” inward or “pulled” outward. This linear movement is transferred to the rotary pinion gear (in both directions) providing bi-directional rotation.

rack and pinion
Visual of rack and pinion
(courtesy of Wikipedia)
Rack and pinion actuators pistons can be pressurized with air, gas, or oil to provide the linear the movement that spins the pinion gear. To rotate the pinion gear in the opposite direction, the air, gas, or oil must be redirected to the other sides of the piston, or use coil springs as the energy source for rotation. Rack and pinion actuators using springs are referred to as "spring-return actuators". Actuators that rely on opposite side pressurization of the rack are referred to as "direct acting".

Most actuators are designed for 100-degree travel with clockwise and counterclockwise travel adjustment for open and closed positions. World standard ISO mounting pad are commonly available to provide ease and flexibility in direct valve installation.

NAMUR mounting dimensions on actuator pneumatic port connections and on actuator accessory holes and drive shaft are also common design features to make adding pilot valves and accessories more convenient.

actuated valve
Fully automated valve with rack
and pinion actuator, solenoid, and
limit switch.
Pneumatic pneumatic rack and pinion actuators are compact and save space. They are reliable, durable and provide a good life cycle. There are many brands of rack and pinion actuators on the market, all with subtle differences in piston seals, shaft seals, spring design and body designs.

For more information on any pneumatic or electric valve automation project, contact:

Mead O’Brien, Inc.
www.meadobrien.com
10800 Midwest Industrial Blvd
St. Louis, Missouri 63132
Phone (314) 423-5161
Toll Free (800) 874-9655
Fax (314) 423-5707
Email: meadstl@meadobrien.com

Pneumatic Instruments

pneumatic transmitters
Pneumatic transmitters
(courtesy of Foxboro)
Air pressure may be used as an alternative signaling medium to electricity. Imagine a pressure transmitter designed to output a variable air pressure according to its calibration rather than a variable electric current. Such a transmitter would have to be supplied with a source of constant-pressure compressed air instead of an electric voltage, and the resulting output signal would be conveyed to the indicator via tubing instead of wires:


The indicator in this case would be a special pressure gauge, calibrated to read in units of process pressure although actuated by the pressure of clean compressed air from the transmitter instead of directly by process fluid. The most common range of air pressure for industrial pneumatic instruments is 3 to 15 PSI. An output pressure of 3 PSI represents the low end of the process measurement scale and an output pressure of 15 PSI represents the high end of the measurement scale. Applied to the previous example of a transmitter calibrated to a range of 0 to 250 PSI, a lack of process pressure would result in the transmitter outputting a 3 PSI air signal and full process pressure would result in an air signal of 15 PSI. The face of this special “receiver” gauge would be labeled from 0 to 250 PSI, while the actual mechanism would operate on the 3 to 15 PSI range output by the transmitter. As with the 4-20 mA loop, the end-user need not know how the information gets transmitted from the process to the indicator. The 3-15 PSI signal medium is once again transparent to the operator.

Typically, a 3 PSI pressure value represents 0% of scale, a 15 PSI pressure value represents 100% of scale, and any pressure value in between 3 and 15 PSI represents a commensurate percentage in between 0% and 100%. The following table shows the corresponding current and percentage values for each 25% increment between 0% and 100%. Every instrument technician tasked with maintaining 3-15 PSI pneumatic instruments commits these values to memory, because they are referenced so often:

Using the Foxboro model 13A pneumatic differential pressure transmitter as an example, the video below highlights the major design elements of pneumatic transmitters, including an overview of "maximum working pressure" versus "maximum measurement range" pressure.

The Foxboro model 13A pneumatic d/p cell transmitters measure differential pressure and transmit a proportional pneumatic output signal.


The information above is attributed to Tony Kuphaldt and is licensed under the Creative Commons Attribution 3.0.