Providing problem solving and educational information for topics related to industrial steam, hot water systems, industrial valves, valve automation, HVAC, and process automation. Have a question? Give us a call at (800) 892-2769 | www.meadobrien.com
Happy New Year from Mead O'Brien
With 2017 coming to a close, all of us at Mead O'Brien wanted to reach out and send our best wishes to our customers, our vendors, and our friends! We hope that 2018 holds success and good fortune for all of you.
Process Temperature Sensors: Basics of Thermocouples and RTDs
Industrial Thermocouple (Ashcroft) |
Thermocouples consist of a junction formed with dissimilar metal conductors. The contact point of the conductors generates a small voltage that is related to the temperature of the junction. There are a number of metals used for the conductors, with different combinations used to produce an array of temperature ranges and accuracy. A defining characteristic of thermocouples is the need to use extension wire of the same type as the junction wires, in order to assure proper function and accuracy.
Here are some generalized thermocouple characteristics.
- Various conductor combinations can provide a wide range of operable temperatures (-200°C to +2300°C).
- Sensor accuracy can deteriorate over time.
- Sensors are comparatively less expensive than RTD.
- Stability of sensor output is not as good as RTD.
- Sensor response is fast due to low mass.
- Assemblies are generally rugged and not prone to damage from vibration and moderate mechanical shock.
- Sensor tip is the measuring point.
- Reference junction is required for correct measurement.
- No external power is required.
- Matching extension wire is needed.
- Sensor design allows for small diameter assemblies.
Industrial RTD (Ashcroft) |
Some generalized RTD attributes:
- Sensor provides good measurement accuracy, superior to thermocouple.
- Operating temperature range (-200° to +850°C) is less than that of thermocouple.
- Sensor exhibits long term stability.
- Response to process change can be slow.
- Excitation current source is required for operation.
- Copper extension wire can be used to connect sensor to instruments.
- Sensors can exhibit a degree of self-heating error.
- Resistance coil makes assemblies less rugged than thermocouples.
- Cost is comparatively higher.
Metso Neles T5 Series Top Entry Rotary Ball Valves
Metso's Neles® T5 series top entry rotary ball valves are designed to meet the requirements of chemical, petro-chemical and refining industries with improved process safety and efficiency of plant.
T5 series valves with famous trunnion mounted Stemball® design are suitable with wide rangeability for demanding heavy duty rotary control applications such as crude oil, hot residual oil, LPG and other hydrocarbon gases and vapors under medium and high pressures.
Unique Stemball® design combined with anti-cavitation and low noise Q-trim technology are making the T5 series valve most suitable with wide rangeability for demanding control applications like anti surge and blow down services. The new high noise reduction Q2-trim is available for gas applications.
Labels:
Arkansas,
Indiana,
Iowa,
Kansas,
Metso Neles T5,
Missouri,
Nebraska,
Neles,
Oklahoma,
Southern Illinois,
T5,
Western Kentucky
Process Control Basics: The Underlying Principle Behind Coriolis Flowmeters
The Coriolis effect, a derivative of Newtonian motion mechanics, describes the force resulting from the acceleration of a mass moving to (or from) the center of rotation. As this video demonstrates, the flowing water in a loop of flexible hose that is “swung” back and forth in front of the body with both hands. Because the water is flowing toward and away from the hands, opposite forces are generated and cause the hose to twist. Coriolis flowmeters apply this principle to measure fluid flow.
For more information on any process flow application, contact Mead O'Brien by calling
(800) 892-2769 or by visiting https://www.meadobrien.com.
For more information on any process flow application, contact Mead O'Brien by calling
(800) 892-2769 or by visiting https://www.meadobrien.com.
Subscribe to:
Posts (Atom)