Showing posts with label Armstrong. Show all posts
Showing posts with label Armstrong. Show all posts

Saturday, March 31, 2018

How Your Steam Trap Selection Affects Your Bottom Line Profits: Inverted Bucket Trap vs.Thermodynamic Trap

Steam Trap Selection
Below is a white paper, courtesy of Armstrong International, describing how steam trap selection affects profitability. This document compares Inverted Bucket Traps and Thermodynamic Traps.

The ability to monitor and maintain your facility’s steam trap population directly affects your bottom line. Armstrong’s Steam Testing and Monitoring Systems give you the means to achieve best practice steam system management by proactively monitoring your steam trap inventory.

For more information on Armstrong steam and hot water products, visit Mead O'Brien at https://meadobrien.com of call (800) 892-2769.


Tuesday, February 20, 2018

Steam Trapping and Steam Tracing Equipment

Inverted Bucket Steam Trap
Inverted Bucket Steam Trap
(Armstrong)
An efficient steam trap wastes less energy, which means you burn less fuel and reduce emissions. The results are energy savings and a cleaner, healthier environment. By helping companies manage energy, Armstrong steam traps are also helping protect the world we all share.

As a steam trap wears, it loses efficiency and begins to waste energy. But Armstrong inverted bucket traps last years longer than other traps. They operate more efficiently longer because the inverted bucket is the most reliable steam trap operating principle known.

Clearly, the longer an efficient trap lasts, the more it reduces energy wasted, fuel burned and pollutants released into the air. It’s an all-around positive situation that lets the environment win, too. Bringing energy down to earth in your facility could begin with a renewed focus on your steam system, especially your steam traps. Said another way: Zeroing in your steam traps is an easy way to pay less money for energy—and more attention to the environment.

Companies around the world are beginning to realize that rather than being separate challenges, energy and the environment are and have always been a single mission. And that quality management in one area will surely impact the other.

The catalog below should be utilized as a guide for the installation and operation of steam trapping equipment. Selection or installation should always be accompanied by competent technical assistance or advice. Armstrong and its local representatives are available for consultation and technical assistance. We encourage you to contact your Armstrong Representative for complete details.

Monday, February 12, 2018

The Orifice Plate: Great for Gases, Clean Liquids, and Low Velocity Steam

Orifice Plate
Orifice plate mounted in flange and alone.
Courtesy of Armstrong International.
An orifice plate, at its simplest, is a plate with a machined hole in it. Carefully control the size and shape of the hole, mount the plate in a fluid flow path, measure the difference in fluid pressure between the two sides of the plate, and you have a simple flow measurement setup. The primary flow element is the differential pressure across the orifice. It is the measurement from which flow rate is inferred. The differential pressure is proportional to the square of the flow rate.

Orifice plates are the most commonly used differential pressure measurement device and are applicable for measurements in gases, clean liquids, and low velocity steam.  Orifice plates allow for relatively easy installation and replacement if necessitated by changes in process parameters or life cycle deterioration.

An orifice plate is often mounted in a customized holder or flange union that allows removal and inspection of the plate. A holding device also facilitates replacement of a worn orifice plate or insertion of one with a different size orifice to accommodate a change in the process. While the device appears simple, much care is applied to the design and manufacture of orifice plates. The flow data obtained using an orifice plate and differential pressure depend upon well recognized characteristics of the machined opening, plate thickness, and more. With the pressure drop characteristics of the orifice fixed and known, the measuring precision for differential pressure becomes a determining factor in the accuracy of the flow measurement.
Orifice plate configurations
Orifice plate configurations (click for larger view).
There are standards for the dimensional precision of orifice plates that address:
  • Circularity of the bore
  • Flatness
  • Parallelism of the faces
  • Edge sharpness
  • Surface condition
Orifice plates can be effectively "reshaped" by corrosion or by material deposits that may accumulate from the measured fluid. Any distortion of the plate surface or opening has the potential to induce measurable error. This being the case, flow measurement using an orifice plate is best applied with clean fluids.

Certain aspects of the mounting of the orifice plate may also have an impact on its adherence to the calibrated data for the device. Upstream and downstream pipe sections, concentric location of the orifice in the pipe, and location of the pressure measurement taps must be considered.
orifice plate
Orifice plate between two flanges.
Properly done, an orifice plate and differential pressure flow measurement setup provides accurate and stable performance. Share your flow measurement challenges of all types with a specialist, combining your own process knowledge and experience with their product application expertise to develop an effective solution.

Download a cut sheet for Armstrong orifice plates and flanges from this Mead O'Brien link.

For more information, call (800) 892-2769 or visit https://meadobrien.com.

Monday, November 13, 2017

Inverted Submerged Bucket Steam Traps: How They Work

Diagram of the Armstrong Inverted Bucket Trap
Cutaway diagram of the Armstrong Inverted Bucket Trap.
The inverted submerged bucket steam trap is a mechanical trap that operates on the difference in density between steam and water. Steam entering the inverted submerged bucket causes the bucket to float and close the discharge valve.

Condensate entering the trap changes the bucket to a weight that sinks and opens the trap valve to discharge the condensate. Unlike other mechanical traps, the inverted bucket also vents air and carbon dioxide continuously at steam temperature.

This simple principle of condensate removal was introduced by Armstrong International in 1911. Years of improvement in materials and manufacturing have made today’s Armstrong inverted bucket traps virtually unmatched in operating efficiency, dependability and long life.

For more information on Armstrong steam traps, visit http://www.meadobrien.com or call (800) 892-2769.

Monday, October 16, 2017

Solving Humidification Problems in Campus Science Lab

HumidiClean humidifier
Background

Armstrong International’s representative affiliate, Mead O’Brien, visited Columbia College along with a local specifying engineer to determine a solution to the customer’s humidification problems in campus science labs.

The site was experiencing fluctuations in relative humidity levels due to having only one Dri-Steam GTS-600 (450lbs/hr.) installed. Because the unit was oversized for application, the swings in humidity were causing the relative humidity to exceed the spec.

Scope of Work

To meet the customer’s demand for a larger capacity, Armstrong International supplied two (2) Gas-Fired HumidiCleanTM humidifiers at 310lbs/hr. and header the units together to feed the AHU. The GFH-300s provided accuracy and turndown required to remain in spec.

Benefits

Columbia College recognized the real benefits of supplying two appropriately sized units to accomplish reliable and accurate levels of humidity in the science labs. The customer also has enjoyed the 82% efficiency rating of the GFH-300 as well as the modulated control of steam output. Because of Armstrong’s ionic bed technology, both units have required minimal cleaning and maintenance. Since installation, Columbia College has not experienced any issues with both units.

Thursday, August 31, 2017

Direct Steam Injection Humidifier Replacement in Large Hospital

Direct Steam Injection Humidifier Replacement in Large Hospital
Direct Steam Injection Humidifier Replacement
at St. Louis Children's Hospital
The St. Louis Children’s Hospital is one of the premier children’s hospitals in the United States. It serves not just the children of St. Louis, but children and their families from across the world. The hospital provides a full range of pediatric services to the St. Louis metropolitan area and primary service region covering six states. As the pediatric teaching hospital for Washington University School of Medicine, the hospital offers nationally recognized programs for physician training and research. The hospital employees 3,000 people as well as 800 medical staff members. There are also 1,300 auxiliary members and volunteers on-site.

St. Louis Children’s Hospital was undergoing a significant renovation and determined that the original direct steam injection humidifiers that were installed over 30 years ago needed to be replaced. Within 30 years, they had only experienced minor issues due to the age and use of the humidifiers. Most issues were labeled as manifold o-ring leaks or actuator leakage (either seal kits or diaphragms).

St. Louis Children’s Hospital consulted with their local Armstrong representative, Mead O’Brien, and looked at using direct steam injection humidifiers with electric actuators versus the atmospheric steam generating humidifier. Due to the maintenance, space concerns, and, most importantly, the controllability, Mead O’Brien suggested direct steam injection humidifiers.

When replacing humidifiers during a renovation it is important to analyze the absorption distance. There are many different variables that can affect the absorption distance and, in this case, guidelines and regulations have changed over 30 years since original installation. The amount of outside air brought into the space directly affects the RH levels, and in the healthcare industry, the minimum requirement of fresh air has changed multiple times in the past 30 years. Because of this, some installations required the use of multiple manifolds to shorten the absorption distance.

During this first phase of the renovation, thirty-nine (39) new steam humidifiers were installed. Thirty-four more we supplied the following year..

In addition, the following Armstrong products were also installed:
  • Six Pressure Reducing Valves 
  • Three Electric Condensate Pumps 
  • One Armstrong Flo-Rite
  • Five VERIS Flow Meters
Because of the customer’s relationship with their local Armstrong representative, St. Louis Children’s Hospital received a quality solution that was designed to meet all of their needs and will be supported by Armstrong for many years to come.

Click this link to download the PDF version of this steam injection humidifier application note.

Monday, July 31, 2017

A Very Unique "No Straight Run Required" Flowmeter

VERIS Accelabar
VERIS Accelabar Detail
The VERIS Accelabar® is a unique flow meter that combines two differential pressure technologies to produce performance never before attainable in a single flow meter.

The VERIS Accelabar® is capable of measuring gases, liquids, and steam at previously unattainable flow rate turndowns—with no straight run requirements.

No Straight Run Required

The VERIS Accelabar® can be used in extremely limited straight run piping configurations. All necessary straight run is integral to the meter. The stabilization and linearization of the velocity profile within the throat of the nozzle eliminates the need for any upstream or downstream pipe runs.

Read the document below for more information or download the VERIS Accelabar® PDF from Mead O'Brien's website here.

Tuesday, June 13, 2017

Common Industrial and Commercial Process Heating Methodologies

Gas Steam Boiler
Fuel boiler producing steam.
Process heating methodologies can be grouped into four general categories based on the type of fuel consumed:
  1. Steam
  2. Fuel
  3. Electric
  4. Hybrid systems
These technologies are based upon conduction, convection, or radiative heat transfer mechanisms - or some combination of these. In practice, lower-temperature processes tend to use conduction or convection, whereas high-temperature processes rely primarily on radiative heat transfer. Systems using each of the four energy types can be characterized as follows:

STEAM


Heat Exchanger
Tube heat exchanger.
Steam-based process heating systems introduce steam to the process either directly (e.g., steam sparging) or indirectly through a heat transfer mechanism. Large quantities of latent heat from steam can be transferred efficiently at a constant temperature, useful for many process heating applications. Steam-based systems are predominantly used by industries that have a heat supply at or below about 400°F and access to low-cost fuel or byproducts for use in generating the steam. Cogeneration (simultaneous production of steam and electrical power) systems also commonly use steam-based heating systems. Examples of steam-based process heating technologies include boilers, steam spargers, steam-heated dryers, water or slurry heaters, and fluid heating systems.

FUEL


Fuel-based process heating systems generate heat by combusting solid, liquid, or gaseous fuels, then transferring the heat directly or indirectly to the material. Hot combustion gases are either placed in direct contact with the material (i.e., direct heating via convection) or routed through radiant burner tubes or panels that rely on radiant heat transfer to keep the gases separate from the material (i.e., indirect heating).  Examples of fuel-based process heating equipment include furnaces, ovens, red heaters, kilns, melters, and high-temperature generators.

ELECTRICITY


Electricity-based process heating systems also transform materials through direct and indirect processes. For example, electric current is applied directly to suitable materials to achieve direct resistance heating; alternatively, high-frequency energy can be inductively coupled to suitable materials to achieve indirect heating. Electricity-based process heating systems are used for heating, drying, curing, melting, and forming. Examples of electricity-based process heating technologies include electric arc furnace technology, infrared radiation, induction heating, radio frequency drying, laser heating, and microwave processing.

HYBRID


Hybrid process heating systems utilize a combination of process heating technologies based on different energy sources and/or heating principles to optimize energy performance and increase overall thermal efficiency. For example, a hybrid boiler system may combine a fuel-based boiler with an electric boiler to take advantage of access to lower off-peak electricity prices. In an example of a hybrid drying system, electromagnetic energy (e.g., microwave or radio frequency) may be combined with convective hot air to accelerate drying processes; selectively targeting moisture with the penetrating electromagnetic energy can improve the speed, efficiency, and product quality as compared to a drying process based solely on convection, which can be rate-limited by the thermal conductivity of the material. Optimizing the heat transfer mechanisms in hybrid systems offers a significant opportunity to reduce energy consumption, increase speed/throughput, and improve product quality.

The experts at Mead O'Brien are always available to assist you with any process heating application. Visit http://meadobrien.com or call (800) 892-2769 for more information.

Thursday, April 27, 2017

Condensate Drainage ... Why It’s Necessary in Industrial Steam Systems

condensate drain
Condensate drain
(Armstrong).
Abstracted with permission from Armstrong International

Condensate is the by-product of heat transfer in a steam system. It forms in the distribution system due to unavoidable radiation. It also forms in heating and process equipment as a result of desirable heat transfer from the steam to the substance heated. Once the steam has condensed and given up its valuable latent heat, the hot condensate must be removed immediately. Although the available heat in a pound of condensate is negligible as compared to a pound of steam, condensate is still valuable hot water and should be returned to the boiler.

The need to drain the distribution system.
Condensate Drainage
Figure 1: Condensate allowed to collect in pipes or tubes
is blown into waves by steam passing over it until it blocks
steam flow at point A. Condensate in area B causes a pressure
differential that allows steam pressure to push the slug
of condensate along like a battering ram.

Condensate lying in the bottom of steam lines can be the cause of one kind of water hammer. Steam traveling at up to 100 miles per hour makes “waves” as it passes over this condensate (Fig. 1). If enough condensate forms, high-speed steam pushes it along, creating a dangerous slug that grows larger and larger as it picks up liquid in front of it. Anything that changes the direction—pipe fittings, regulating valves, tees, elbows, blind flanges—can be destroyed. In addition to damage from this “battering ram,” high-velocity water may erode fittings by chipping away at metal surfaces.

The need to drain the heat transfer unit. 

Condensate Drainage
Figure 2: Coil half full of condensate can’t
work at full capacity.
When steam comes in contact with condensate cooled below the temperature of steam, it can produce another kind of water hammer known as thermal shock. Steam occupies a much greater volume than condensate, and when it collapses suddenly, it can send shock waves throughout the system. This form of water hammer can damage equipment, and it signals that condensate is not being drained from the system. Obviously, condensate in the heat transfer unit takes up space and reduces the physical size and capacity of the equipment. Removing it quickly keeps the unit full of steam (Fig. 2). As steam condenses, it forms a film of water on the inside of the heat exchanger. Non-condensable gases do not change into liquid and flow away by gravity. Instead, they accumulate as a thin film on the surface of the heat exchanger—along with dirt and scale. All are potential barriers to heat transfer (Fig. 3).

The need to remove air and CO2. 

Air is always present during equipment start-up and in the boiler feedwater. Feedwater may also contain dissolved carbonates, which release carbon dioxide gas. The steam velocity pushes the gases to the walls of the heat exchangers, where they may block heat transfer. This compounds the condensate drainage problem, because these gases must be removed along with the condensate.

Fig 3: Potential barriers to heat transfer: steam heat and temperature
 must penetrate these potential barriers to do their work.


For more information about any industrial steam or hot water system, contact Mead O'Brien by visiting www.meadobrien.com or call (800) 892-2769.

Thursday, March 23, 2017

Train Your People for Better Plant Steam and Hot Water Systems

Do the people who maintain your plant’s steam system really understand how to save you money?

It's probably a good idea to have them attend a professional steam and hot water training seminar. These programs provide a window into elements of the plant steam cycle as they observe live steam and condensate behavior in glass piping and glass-bodied steam traps under differing conditions. They gain very useful knowledge regarding:
  • Steam generation 
  • Distribution 
  • Control & Heat transfer 
  • Heat Recovery opportunities 
  • Condensate removal & return
Mead O'Brien, a company with decades of experience in industrial and commercial steam and hot water systems provides such training. See their video below:

Thursday, March 16, 2017

The Application of Heat in Industrial Applications

Heat exchanger
Heat exchanger (courtesy of Armstrong)
The measurement and control of heat related to fluid processing is a vital industrial function, and relies on regulating the heat content of a fluid to achieve a desired temperature and outcome.

The manipulation of a substance's heat content is based on the central principle of specific heat, which is a measure of heat energy content per unit of mass. Heat is a quantified expression of a systems internal energy. Though heat is not considered a fluid, it behaves, and can be manipulated, in some similar respects. Heat flows from points of higher temperature to those of lower temperature, just as a fluid will flow from a point of higher pressure to one of lower pressure. 

A heat exchanger provides an example of how the temperature of two fluids can be manipulated to regulate the flow or transfer of heat. Despite the design differences in heat exchanger types, the basic rules and objectives are the same. Heat energy from one fluid is passed to another across a barrier that prevents contact and mixing of the two fluids. By regulating temperature and flow of one stream, an operator can exert control over the heat content, or temperature, of another. These flows can either be gases or liquids. Heat exchangers raise or lower the temperature of these streams by transferring heat between them. 

Recognizing the heat content of a fluid as a representation of energy helps with understanding how the moderation of energy content can be vital to process control. Controlling temperature in a process can also provide control of reactions among process components, or physical properties of fluids that can lead to desired or improved outcomes.
 
Heat can be added to a system in a number of familiar ways. Heat exchangers enable the use of steam, gas, hot water, oil, and other fluids to deliver heat energy. Other methods may employ direct contact between a heated object (such as an electric heating element) or medium and the process fluid. While these means sound different, they all achieve heat transfer by applying at least one of three core transfer mechanisms: conduction, convection, and radiation. Conduction involves the transfer of heat energy through physical contact among materials. Shell and tube heat exchangers rely on the conduction of heat by the tube walls to transfer energy between the fluid inside the tube and the fluid contained within the shell. Convection relates to heat transfer due to the movement of fluids, the mixing of fluids with differing temperature. Radiant heat transfer relies on electromagnetic waves and does not require a transfer medium, such as air or liquid. These central explanations are the foundation for the various processes used to regulate systems in industrial control environments.

The manner in which heat is to be applied or removed is an important consideration in the design of a process system. The ability to control temperature and rate at which heat is transferred in a process depends in large part on the methods, materials, and media used to accomplish the task. 

Monday, February 27, 2017

Pressure Reducing Valves and Temperature Regulators

Pressure reducing valves
Pressure reducing valves
(courtesy of Armstrong)
Pressure reducing valves (PRVs) and temperature regulators help you manage steam, air and liquid systems safely and efficiently. And they ensure uninterrupted productivity by maintaining constant pressure or temperature for process control.

Steam, liquids and gases usually flow at high pressure to the points of use. At these points, a pressure reducing valve lowers the pressure for safety and efficiency, and to match the requirements of the application. There are three types of PRVs.

  1. Direct-Acting. The simplest of PRVs, the direct-acting type, operates with either a flat diaphragm or convoluted bellows. Since it is self-contained, it does not need an external sensing line downstream to operate. It is the smallest and most economical of the three types and is designed for low to moderate flows. Accuracy of direct-acting PRVs is typically +/- 10% of the downstream set point.
  2. Internally Piloted Piston-Operated. This type of PRV incorporates two valves-a pilot and main valve-in one unit. The pilot valve has a design similar to that of the direct-acting valve. The discharge from the pilot valve acts on top of a piston, which opens the main valve. This design makes use of inlet pressure in opening a large main valve than could otherwise be opened directly. As a result, there is greater capacity per line size and greater accuracy (+/- 5%) than with the direct-acting valve. As with direct-acting valves, the pressure is sensed internally, eliminating the need for an external sensing line.
  3. Externally Piloted. In this type, double diaphragms replace the piston operator of the internally piloted design. This increased diaphragm area can open a large main valve, allowing a greater capacity per line size than the internally piloted valve. In addition, the diaphragms are more sensitive to pressure changes, and that means accuracy of +/- 1%. This greater accuracy is due to the location, external to the valve, of the sensing line, where there is less turbulence. This valve also offers the flexibility to use different types of pilot valves (i.e., pressure, temperature, air- loaded, solenoid or combinations).
Designed for steam, water and non-corrosive liquid service, self-actuated temperature regulators are compact, high-performance units. They operate simply and are therefore suitable for a wide variety of applications. Flexible mounting positions for the sensor, interchangeable capillaries and varied temperature ranges make installation, adjustment and maintenance quick and easy.

For more information on pressure reducing valves, contact Mead O'Brien at (800) 892-2769 or visit http://www.meadobrien.com.

Sunday, November 27, 2016

A Modern Industrial Hot Water System Saves Money Through Efficiency and Safety

Hot water heating systems
State-of-the-art hot water heating systems
improve efficiency and safety, and
increase production and yield.
The use of hot water systems for process heating pre-dates World War II, and initiated an ongoing effort for engineered materials to accommodate higher pressures and temperatures. After WWII the need for instantaneous hot water generation, distribution and precise temperature control for industrial applications continued to rise. High temperature hot water systems became increasingly popular because they were relatively inexpensive to install, provided long operating life, and were inexpensive to operate and maintain. Their closed system design made these systems more tolerant to corrosion and scale, while the use of pumps eliminated the need for complex piping for managing condensate.

By developing a comprehensive strategy that includes state-of-the-art water heaters, water temperature controls, hose stations, variable frequency drive (VFD) pump assemblies and ancillary accessories such as storage tanks, and pressure-reducing valves, processing plants can improve efficiency and safety, and increase production and yield.

Advanced hot water heating systems typically include:
  • Steam/water hot water systems with digital control technology and instantaneous heat exchanger design—shell and tube or plate and frame.
  • Industrial mixing center with digital control valves, pre-piped as an IMC with requisite installation components for compact design and ease of installation.
  • Digital control valves for delivering hot water immediately on demand, and maintained at precision temperatures (+/-1°F, +/-0.5°C).
  • VFD pump assemblies application-engineered and configured for your site.
  • Hot & cold water hose stations with thermostatic mixing valves that replaces the old, basic Y as the temperature controller.
The brochure below, courtesy of Armstrong International, provides more insight where specific components are used.

Tuesday, September 20, 2016

Guidelines for Prevention of Water Hammer in Industrial Applications

water hammer damage
Damage caused by water hammer
Information courtesy of Armstrong International

Water hammer. It's a familiar sound nearly everyone has heard in their own home when someone slams a faucet closed. You have probably also heard it coming from radiators during the winter heating season. In industrial situations, though, water hammer is more than just a noisy annoyance. Water hammer that results from localized abrupt pressure drops may never be heard. Yet water hammer can acquire great force, damaging equipment, ruining product, and potentially putting personnel at risk.

Water hammer begins when some force accelerates a column of water along an enclosed path. The incompressible nature of water gives it the power of a steel sledge as it slams into elbows, tees, and valves. The resulting vibrations are transmitted along the water column and piping, damaging fittings and equipment far removed from the problem source.

Water hammer can occur in any water supply line, hot or cold, and its effects can be even more pronounced in bi-phase systems. Bi-phase systems contain both condensate and live or flash steam in the same space. Heat exchangers, tracer lines, steam mains, condensate return lines, and in some cases, pump discharge lines, may contain a bi-phase mix.

Three distinct conditions have been identified, which provide the force that initiates water hammer. These conditions, hydraulic shock, thermal shock, and differential shock, are common to many industrial fluid applications. However, following a few simple guidelines will help you minimize the occurrence of these shocks and diminish the chance of damaging water hammer.

Hydraulic shock occurs when a valve is closed too abruptly. When a water valve is open, a solid column of water moves from its source at the main to the valve outlet. This could be 100 pounds of water flowing at 10 feet per second, or about 7 miles per hour. Closing the valve suddenly is like trying to instantly stop a 100-pound hammer. A shockwave of about 6600 psi slams into the valve and rebounds in all directions, expanding the piping and reflecting back and forth along the length of the system until its momentum is dissipated. By closing the valve slowly, the velocity of the water is reduced before the column is stopped. Since the momentum of the water is decreased gradually, damaging water hammer will not be produced.

Sometimes, check valves can produce hydraulic shock. Swing check valves are often used to prevent liquid being drawn into spaces that are subject to intermittent vacuums. They are also applied to prevent back-flow from elevated systems when adequate pressure to raise the liquid cannot be guaranteed. In either case, the acceleration of the reversing column of liquid may be quite high. If the swing length of the check valve is sufficient, the column will build enough inertia to cause hydraulic shock in the time it takes the valve to slam shut. Substitute silent or non-slam check valves for swing checks to prevent water hammer in these situations. Silent check valves are center-guided to provide a much shorter stroke than swing checks. These valves also use a spring to help enclosing. The result is that silent check valves are closed by the loss of upstream pressure rather than the reversal of flow, preventing hydraulic shock.

Water hammer arresters, if correctly sized, placed, and maintained, will reduce water hammer. When the forward motion of the water column is stopped by the valve, part of the reversing column is forced into the water hammer arrester. The water chamber of the arrester expands at a rate controlled by the pressure chamber, gradually slowing the column, and preventing hydraulic shock. To prevent water hammer due to hydraulic shock, avoid suddenly stopping water columns. Ensure slow closure of valves, and install spring-loaded, center-guided, non-slam, or silent check valves that close before flow reversal when appropriate. Use water hammer arresters if necessary, but be sure they are sized and placed correctly, and are well-maintained.

Water hammer may also be initiated by thermal shock. In bi-phase systems, steam bubbles may become trapped in pools of condensate. Since the condensate temperature is usually below saturation, the steam will immediately collapse. Steam occupies hundreds of times the volume of an equal amount of water. When the steam collapses, water is accelerated into the resulting vacuum from all directions. When the void is filled, the water impacts at the center, sending shockwaves in all directions.

One likely place for thermal shock to occur is in steam utility corridors. In these areas, the drip traps from high-pressure steam mains often discharge directly into the pumped condensate return lines. The temperature of the condensate in these lines usually ranges from 140 to 180 degrees Fahrenheit. The condensate being discharged from the steam trap is at nearly steam temperature when it passes through the trap orifice. When the trap discharge enters the low-pressure condensate line, a great deal of it flashes back into steam. The flash steam immediately collapses again when it encounters the relatively cool pump discharge water. This thermal shock often causes damaging water hammer. The localized sudden reduction in pressure near the wall chips away piping and tube interiors. Oxide layers that otherwise would resist further corrosion are removed, resulting in accelerated deterioration of piping and equipment. To minimize such a disturbance, the drip trap should discharge in the direction of condensate flow by means of a special fitting.

This method of controlling thermal shock, called "sparging," reduces the concentration of collapsing steam bubbles, and keeps the action from occurring by the pipe wall. Thermal shock can also occur easily in steam coils if they are constructed as shown here. Since the steam is directed toward the center tube first, it can reach the return header before the top and bottom tubes are filled. Consequently, steam feeds the more remote tubes from both ends. With steam flowing into both ends of a tube, waves of condensate flow toward each other. These waves have the potential of trapping pockets of steam between them. If this happens, thermal shock will result when the pocket of steam collapses and water hammer will probably occur.

Prevent the thermal shock that is generated by such a design by substituting a constant-purge device, such as a differential condensate controller, for the steam trap. Condensate controllers maintain a positive differential pressure across the coil at all times. All the tubes will be fed from the supply end only, preventing the entrapment of steam and the resulting thermal shock. Malfunctioning steam traps may also contribute to thermal shock followed by water hammer. A steam trap that has failed open injects live steam directly into the condensate return line. If this steam is mixed with return line condensate of sufficiently low temperature, it will immediately collapse, and thermal shock will follow.

To prevent the occurrence of water hammer due to thermal shock, you must reduce the concentration of collapsing steam bubbles in the condensate. If flashing condensate must be discharged into a cool condensate line, it should be discharged in the direction of condensate flow and away from the pipe wall. Precautions must be taken that heat exchanger tubes are always filled from the supply end only.

Differential shock, like thermal shock, occurs in bi-phase systems. Differential shock can occur whenever steam and condensate flow in the same line, but at different velocities, such as in high-pressure condensate return lines. In bi-phase systems, the velocity of the steam is often ten times the velocity of the liquid. If this gas flow causes condensate waves to rise and fill the pipe, a seal is formed with the pressure of the steam behind it. Since the steam cannot flow through the condensate seal, pressure drops on the downstream side. The condensate seal now becomes a piston that is accelerated downstream by virtue of this pressure differential. As it is driven downstream, the piston picks up more liquid that is added to the existing mass of the slug, and velocity increases. This is differential shock. If the slug gains high enough momentum, and is then required to change direction at a tee or elbow, or is stopped by a valve, great damage can be done.

In the demo lab at Armstrong International, a fixture was assembled to illustrate the problem with a 20-foot, 2-inch-diameter glass pipe to act as a condensate return line. The pipe is pitched one-quarter inch in 10 feet to provide gravity flow. Flowing through the pipe, we have cold water. In addition to water, we can also have compressed air flowing in the system to simulate flash steam flowing across the top of the condensate by virtue of differential pressure. One flow meter constantly measures the flow rate of the water. Another flow meter continuously monitors the flow rate of the compressed air. As you can see, we now have 1500 pounds per hour of water flowing in our glass pipe, and no compressed air. Under this condition, our pipe is approximately half-filled with water.

As we increase the flow rate of water in our pipe to 2,000 pounds per hour, the depth of the water increases to five-eighths. We now introduce compressed air into the system to simulate flash steam with a flow rate of about 200 standard cubic feet per hour, and the depth of the water recedes. We are increasing the speed of the water flowing through the pipe by virtue of the velocity of the gas flowing across its surface. Observe now as the compressed air flow increases. The waves formed on the surface of the condensate become higher. Further increasing the air flow causes the waves to block off more of the cross section of the piping until a seal is formed, completely closing off the pipe. A slug of condensate is accelerated downstream by the pressure differential, becoming a piston that gains in mass and velocity as it travels. The proper sizing and pitching of condensate lines are the only means of guarding against this type of problem. The Armstrong Steam Conservation Handbook includes a chart that helps you in deciding the correct condensate return line size for your particular application.

Differential shock can also become a problem when elevated heat exchange equipment is drained with a substantial vertical drop ahead of the trap. Under normal conditions, condensate drains down the walls of the pipe. A sufficient volume of steam constantly flows down the center of the pipe to replace the steam that is condensed by radiation losses of the piping and the trap body itself. The steam flow rate increases if a thermostatic element, such as the bellows or wafer in an F & T trap, opens. If a slug of condensate seals off the pipe, steam collapses downstream of the seal. Again, a pressure differential forms, and this, along with gravity, accelerates the slug. When this piston strikes the trap, it can damage the float, the thermostatic element, or other parts of its mechanisms.

To avoid differential shock arising from this situation, use an F & T trap and back-vent it to the top of the vertical line to maintain near-equal pressure throughout the riser, even if a slug of condensate forms. In both of the two previous cases, the condensing of steam downstream of the seal produced the acceleration. It follows that the likelihood of differential shock arising, and causing water hammer, is greater in uninsulated pipes, especially on outdoor systems, than in insulated pipes. Long runs of any kind between the heat exchange equipment and the trap can produce this situation, and should be avoided. Damaging water hammer may also occur due to differential shock whenever there is an improperly-dripped pocket ahead of a control valve. Condensate builds up in front of the valve while it is closed. When the valve is opened, the slug of condensate is driven through the valve and into the piping and equipment by the live steam. The placement of a riser and a drip trap immediately upstream of the control valve will prevent this rampaging slug.

To control differential shock, you must prevent condensate seals from forming in bi-phase systems. Condensate lines must be sized correctly, and long vertical drops to the traps must be back-vented. The length of the lines to traps should be minimized, and the lines may have to be insulated to reduce condensing. The installation of a proper drip leg ahead of control valves will prevent differential shock from occurring when the control valve is opened after a period of closure.

Careful attention to these few guidelines will prevent most water hammer. Prevent the sudden stopping of water in pipelines by closing manual valves slowly, and by installing spring-loaded, center-guided, silent check valves where appropriate. Prevent thermal shock by using a sparging tube wherever flash steam is discharged into condensate at a lower temperature, and by ensuring that heat exchanger tubes are filled from one end. Prevent differential shock in bi-phase systems by providing return lines that are properly pitched and have adequate size. Avoid draining equipment with long lines to the trap, and insulate condensate lines whenever necessary. Following these guidelines for the proper design and operation of your system will minimize the likelihood of the shocks that cause water hammer. This, in turn, will greatly reduce the likelihood of damage to your system, to your product, and to your personnel.


For more information contact Mead O'Brien at (800) 892-2769 or visit http://www.meadobrien.com.

Tuesday, August 23, 2016

Understanding & Solving Heat Transfer Equipment Stall

heat transfer equipment
Heat transfer loop
Stall can most easily be defined as a condition in which heat transfer equipment is unable to drain condensate and becomes flooded due to insufficient system pressure.

Stall occurs primarily in heat transfer equipment where the steam pressure is modulated to obtain a desired output (i.e. product temperature). The pressure range of any such equipment ( coils, shell & tube, etc....) can be segmented into two (2) distinct operational modes, Operating and Stall.

Operating: In the upper section of the pressure range the operating pressure (OP) of the equipment is greater than the back pressure (BP) present at the discharge of the steam trap. Therefore a positive pressure differential across the trap exists allowing for condensate to flow from the equipment to the condensate return line.

Stall: In the lower section of the pressure range the operating pressure (OP) of the equipment is less than or equal to the back pressure (BP) present at the discharge of the steam trap. Therefore a negative or no pressure differential exists, this does not allow condensate to be discharged to the return line and the condensate begins to collect and flood the equipment.

You can read the entire Armstrong technical paper below.

Visit this link to download your own copy of Armstrong Fluid Handling: Understanding and Solving Equipment Stall.

Friday, July 22, 2016

Traps for Sour Gas Service

Armstrong Series 300
Armstrong Series 300
What is “sour gas”? 

In the oil and gas industry, “sour gas” refers to natural gas that is contaminated with hydrogen sulfide (H2S or “sulfide”). “Sour crude,” similarly, is crude oil that contains hydrogen sulfide. These are naturally occurring conditions, but definitely not desirable. Aside from the environmental pollution problems with “high-sulfur” fuels, there are some serious corrosion problems that can affect many materials. Liquid drainers (drain traps) and strainers are the most common Armstrong products ordered for sour gas service. A few other products are sometimes specified, notably inverted bucket air traps. An inquiry may be accompanied by an extensive specification of H2S concentrations; there may be a line indicating “Sour Gas Service;” or may only be the note “NACE.” This is a reference to Standard MR0175-93 published by the National Association of Corrosion Engineers (NACE).

What is the problem? 

H2S under pressure permeates into the crystalline structure of the metal and strains the structure of the crystal. This reduces its ability to deform in a ductile manner. The net effect is to make the material brittle. In the presence of external stresses due to applied pressure or loads, or internal stresses due to cold working or welding, parts may fail by cracking without any warning. This process is called Sulfide Stress Cracking (SSC). SSC is affected by many parameters, including: · Composition, strength, heat treatment, and microstructure of the material; · Hydrogen ion concentration (pH) of the environment; · Hydrogen sulfide concentration and total pressure; · Total tensile stress; · Time and temperature. Choice of products and their limitations. Inverted bucket traps (primarily for air trap service) should be selected from the Series 300 traps. The bucket and mechanism (except valve and seat) will be annealed to eliminate the locked-in stresses from the stamping operations. The valve and seat will be made from Type 316 stainless, without additional heat treatment. Cast iron bucket weights are permitted, since they are not stressed in tension. Special bolting is required only if the sour environment is also outside the trap.

Download the Sour Gas Trap Selection Guide Here

Tuesday, May 31, 2016

Wireless Monitoring Technology Keeps Watchful Eye on Steam Trap Operation

Model ST5700
Model ST5700
The Armstrong Intelligent Monitoring Model ST5700 is a wireless monitoring technology that efficiently monitors and evaluates steam trap operation. It identifies the conditions of a steam trap to determine significant problems that could put your operation at risk and can accurately detect potential issues such as plugged and blow thru steam traps. 

The AIM®ST5700 helps identify the root cause while you minimize production losses and reduce energy consumption. Using non-intrusive technology combined with WirelessHART, the AIM®ST5700 is the ideal solution for any temporary or permanent 24/7 steam trap monitoring.

For more on its operation and use, please read the document below.

For more information, contact:
Mead O'Brien
www.meadobrien.com
(800) 892-2769

Sunday, May 8, 2016

A Better Alternative to Magmeter for Unpolished Condensate Flow Measurement

Veris Accelabar
Veris Accelabar 
A large University was using magnetic flowmeters (Magmeters) to measure the flow of boiler feed water downstream of a condensate polisher. There were occasional system upsets that required the condensate polisher to be bypassed. When this happened, large amounts of debris would be released downstream and pass directly through the Magmeter, causing a build-up of foreign material on the internal sensing surfaces.

A magnetic flowmeter uses an electric current applied to a coil which produces a magnetic field. When conductive liquid flows through the magnetic field, a small voltage, proportional to the liquid velocity, is induced. As long as the interior surfaces of the Magmeter are clean and unobstructed, the meter accurately measures flow. If they get dirty or coated, all bets are off.

It was in the above mentioned upset situations where the University maintenance people were having problems. When upsets occurred, and the condensate polisher had to be by-passed, it meant the Magmeter would also have to be serviced because accuracy could no longer be guaranteed. Servicing the Magmeter was slow and costly. It meant shutting down the line, draining the pipe, removing the flowmeter, cleaning, and then putting it all back together.

Armstrong International’s Veris Group was called in for a consult. After review,  the Veris Group recommended installing an Accelabar® flow meter to offer an alternative solution that could provide reliable flow measurement regardless of an upset condition like unpolished condensate. The Accelabar provided a flow range of 22.5:1 turndown in flow, in a limited straight run scenario. In the past, two transmitters were required to provide the best accuracy across the entire range of the Accelabar. Veris was able to use the Foxboro IDP 10S with its FoxCal™ technology in order to have a combined percent of rate accuracy solution.

The new transmitter installation has 11 separate calibrations loaded into the device. As the differential pressure from the primary element is measured, the transmitter chooses the correct calibration curve. Veris’ solution delivered performance that was previously unattainable with a single differential pressure transmitter.

The Accelabar and Foxboro combined to be best solution, and the Accelabar flow meter is now the University's standard for the boiler feed water measurements.

For more information, contact:

Mead O'Brien, Inc.
10800 Midwest Industrial Blvd
St Louis,  MO 63132
314-423-5161
314-423-5707
www.meadobrien.com

Friday, April 15, 2016

Part 3: What Steam Is, How Steam is Used, and the Properties of Steam

Mead O'Brien Steam Experts
Mead O'Brien Steam Experts
Steam is the gaseous phase (state) of water and has many domestic, commercial, and industrial uses. There are two categories of steam - wet steam and dry steam. In dry steam, all the water molecules stay in the gaseous state. In wet steam, some of the water molecules have released their energy (latent heat) and begin condensing into water droplets.

Steam, usually created by a boiler burning coal or other fuels, became the primary source of energy for mechanical movement during the industrial revolution, ultimately being replaced by fossil fuels and electricity.

Steam has many commercial and industrial uses. In agricultural, steam is used to remediate and sterilize soil. In power generation, approximately 90% of our electricity is created using steam as the working fluid to spin turbines. Autoclaves use steam for sterilization in microbiology labs, research, and healthcare facilities. Many commercial and industrial pieces of equipment are cleaned with steam. Finally, commercial complexes, campuses and military buildings use steam for heat and humidification.

The following video, the FINAL part of a three part series titled “What Steam Is, How Steam is Used, and the Properties of Steam” provides the viewer with an exceptional basis to build from. Special thanks to Armstrong International who created the original work.



For more information on any industrial or commercial steam application, contact:

Mead O'Brien, Inc.
(800) 892-2769

Monday, April 11, 2016

Part 2: What Steam Is, How Steam is Used, and the Properties of Steam

Use of Steam
Steam is the gaseous phase (state) of water and has many domestic, commercial, and industrial uses. There are two categories of steam - wet steam and dry steam. In dry steam, all the water molecules stay in the gaseous state. In wet steam, some of the water molecules have released their energy (latent heat) and begin condensing into water droplets.

Steam, usually created by a boiler burning coal or other fuels, became the primary source of energy for mechanical movement during the industrial revolution, ultimately being replaced by fossil fuels and electricity.

Steam has many commercial and industrial uses. In agricultural, steam is used to remediate and sterilize soil. In power generation, approximately 90% of our electricity is created using steam as the working fluid to spin turbines. Autoclaves use steam for sterilization in microbiology labs, research, and healthcare facilities. Many commercial and industrial pieces of equipment are cleaned with steam. Finally, commercial complexes, campuses and military buildings use steam for heat and humidification.

The following video, the second part of a three part series titled “What Steam Is, How Steam is Used, and the Properties of Steam” provides the viewer with an exceptional basis to build from. Special thanks to Armstrong International who created the original work.



For more information on any industrial or commercial steam application, contact:

Mead O'Brien, Inc.
(800) 892-2769