https://meadobrien.com
(800) 874-9655
Providing problem solving and educational information for topics related to industrial steam, hot water systems, industrial valves, valve automation, HVAC, and process automation. Have a question? Give us a call at (800) 892-2769 | www.meadobrien.com
In the case of inflatable seat butterfly valves, the design includes an inflatable seat. This seat is typically a resilient (often elastomeric) liner that can be inflated or deflated to achieve tight shutoff or to allow the disc to rotate freely.
Unique Operation:
Advantages:
Industrial Applications:
Inflatable seat butterfly valves are especially beneficial in industries where tight sealing and prevention of contamination are critical.
Posi-flate, headquartered in St. Paul, Minnesota, is the worldwide leader in inflatable seat butterfly valves. Comparative tests show that the Posi-flate butterfly valve excels over competitors, with a one to three million cycles lifespan, especially in abrasive conditions. The Posi-flate Series 585/586 is tailored for extreme conditions, catering to heavy-duty needs and high pressures. These valves fit sizes from 2" (50mm) to 24" (600mm), compatible with both ANSI and metric flanges. A comprehensive range of actuators, switches, and controls are available for various applications.
In summary, inflatable seat butterfly valves offer a unique and effective solution to many industrial challenges. Their ability to provide a tight seal, even under challenging conditions, makes them invaluable in various applications where leakage or contamination could be costly.
Valve actuation is the mechanism that drives the valve to open, close, or modulate, controlling the flow of the medium (gas, liquid, or slurry). Pneumatic actuators utilize air pressure to provide the necessary motion, transforming the energy from the compressed air into mechanical movement.
Mechanism: Rack and pinion actuators comprise a cylindrical chamber housing a piston connected to a rack. When air pressure is applied, the piston moves, driving the rack to engage with a pinion, resulting in rotational movement.
Advantages:
Mechanism: The scotch-yoke design converts linear motion into rotational motion using a yoke mechanism and a rotating pin. As the piston rod moves, the yoke slides along the rotating pin, producing rotational movement.
Advantages:
Choosing between rack and pinion and scotch-yoke actuators is not a one-size-fits-all decision. Factors like torque requirements, environmental conditions, space constraints, and costs play vital roles. Engaging with manufacturers and understanding the specific needs of your application will ensure optimal system performance and longevity.