Your Limitorque actuators were a major investment. Don't take chances with an unknown. Choose only a Flowserve Limitorque Blue Ribbon Distributor to assure you're getting factory authorized service. It's just not worth the risk.
Providing problem solving and educational information for topics related to industrial steam, hot water systems, industrial valves, valve automation, HVAC, and process automation. Have a question? Give us a call at (800) 892-2769 | www.meadobrien.com
Limitorque Blue Ribbon Service by Mead O'Brien
Limitorque factory trained technicians, support and parts. It's only factory authorized when the work is done by a Blue Ribbon Repair Center.
Your Limitorque actuators were a major investment. Don't take chances with an unknown. Choose only a Flowserve Limitorque Blue Ribbon Distributor to assure you're getting factory authorized service. It's just not worth the risk.
Your Limitorque actuators were a major investment. Don't take chances with an unknown. Choose only a Flowserve Limitorque Blue Ribbon Distributor to assure you're getting factory authorized service. It's just not worth the risk.
What is this “steam” thing?
Reprinted with permission from InTech Magazine March-April Issue
Author: Steve Huffman VP Marketing & Business Development, Mead O'Brien
This article began as a coy reply to Bill Lydon’s interesting “Talk to Me” column (www.isa.org/intech/201512talk) about Leonardo da Vinci’s accomplishments as an artist applying engineering principles to create engineered works of art. Lydon noted that da Vinci saw science and art as complementary rather than as distinct disciplines. I stated that the word “STEAM,” really STEM + art, was not a new concept. The most recent iteration started sometime within the first decade of the 21st century, gaining traction with the efforts of such influencers as the Rhode Island School of Design beginning in 2010. Lawmakers with whom the Automation Federation met while advocating for our profession on Capitol Hill saw the concept as a way to reach elementary school children who would not otherwise be interested in math, science, and engineering.
My point was why use the word “steam” and create confusion with the engine of the American industrial revolution—and still the most efficient turbine driver and heat transfer media in prominent use to this day? Ironically, I find a declining knowledge base regarding steam systems used in industry, especially in process control, as the baby boomers are now retiring at very high levels. New practitioners, automation or otherwise, who either work on or are charged with engineering or maintaining these utility systems for process are generally not well prepared from a knowledge or educational perspective. This issue really adds to the negative financial impact that poorly designed or poorly maintained steam systems contribute to product quality, throughput, and energy loss.
For the artistic, it seems someone should have realized that the word, with all its thermodynamic glory, was already taken. So is it right to add “art” to the critical-thinking process of STEM and to the engineering curriculum to add another dimension to the student’s education? A number of artists and engineers disagree, but mainly because they only view their “discipline” as a tool that makes the other “discipline” superior. In short, it does go both ways, and purists on both sides probably resent that art and engineering go together. Because we come from the engineering side of the fence, I feel that art probably does broaden the horizons of engineers, but bringing art into engineering certainly does nothing to diminish art in and of itself. As art teaches us, there are many ways to comprehend the same thing.
In my own experience with the brewing industry in St. Louis over the past 40 years, the process mix includes engineering, science, and the application of the art of brewing, which goes back to the ancient Greeks. Modern brewing evolved over the past 150 years with people from those disciplines working together, some even using the “glue” of automation to turn their processes into highly automated, high production, and sophisticated dynamos with dozens of new products released yearly, all of them starting with four basic ingredients.
I project that art in STEM (STEM+A if I were chief acronym maker) is absolutely necessary for automation professionals to better appreciate process and better visualize what the future holds. It is also essential for thinking more abstractly, and in homage to the next big thing, developing a critical eye to analyze, put to practical use, and translate from “production-speak” to meaningful “management-speak” the massive amount of data coming our way with the Industrial Internet of Things revolution of which we are on the cusp. Dealing with disruptive technologies in process and factory automation will require digital skills far in excess of what we can even see on the horizon today. It seems that steam may be creating some buzz, but in the future the real kinetic energy will be created by digital engineers.
Labels:
Arkansas,
Indiana,
Iowa,
Kansas,
Missouri,
Nebraska,
Oklahoma,
process heat,
Southern Illinois,
steam,
Texas Panhandle,
Western Kentucky
Wireless Monitoring Technology Keeps Watchful Eye on Steam Trap Operation
Model ST5700 |
The AIM®ST5700 helps identify the root cause while you minimize production losses and reduce energy consumption. Using non-intrusive technology combined with WirelessHART, the AIM®ST5700 is the ideal solution for any temporary or permanent 24/7 steam trap monitoring.
For more on its operation and use, please read the document below.
For more information, contact:
Mead O'Brien
www.meadobrien.com
(800) 892-2769
For more on its operation and use, please read the document below.
For more information, contact:
Mead O'Brien
www.meadobrien.com
(800) 892-2769
Labels:
Arkansas,
Armstrong,
Indiana,
Iowa,
Kansas,
Missouri,
Model ST5700,
Monitor,
Nebraska,
Oklahoma,
Southern Illinois,
steam trap,
Texas Panhandle,
Western Kentucky
A Quick Primer on Hazardous Area Enclosures
Understanding explosion proof enclosures |
So its important to understand that when describing hazardous area enclosures, "explosion-proof" doesn't mean the enclosure can withstand the forces of an external explosion, but rather that the enclosure is designed to cool any escaping hot gases (caused by an internal spark or arcing contacts) sufficiently enough as to not to allow the ignition of combustible gases or dusts in the surrounding area.
This is a short video that explains what an explosion-proof enclosure looks like, how it works, and why it is safe to use in explosive or combustible atmospheres.
For more information on electrical equipment in hazardous areas visit this page.
Flowserve Limitorque Actuators: General Safety Precautions and Practices
Limitorque multi-turn actuator. |
More than 1 million Limitorque actuators have been installed around the world, and some have been in operation for more than 50 years. The ruggedness and reliability of Limitorque electric actuators are among the primary reasons that customers continue to select Limitorque products.
Actuators requiring 90° of rotation to operate are necessary for quarter-turn valves such as ball, butterfly, plug and dampers, and rotary control valves. These types of Limitorque electric actuators are available for operations such as open-close, modulating, network and rotary service.
Multi-turn actuators are required to operate various types of rising stem valves such as gate, slide-gates, globe, check and linear control valves. These types of Limitorque electric actuators are available for operations such as open-close, modulating, network and linear service.
General Safety Precautions
- Warning: Read the Installation and Maintenance Manual carefully and completely before attempting to install, operate, or troubleshoot the Limitorque actuator.
- Warning: Be aware of electrical hazards. Turn off incoming power before working on the actuator and before opening the switch compartment.
- Warning: Potential HIGH PRESSURE vessel — be aware of high-pressure hazards associated with the attached valve or other actuated device when installing or performing maintenance on the actuator. Do not remove the actuator mounting bolts from the valve or actuated device unless the valve or device stem is secured or there is no pressure in the line.
- Warning: For maintenance and/or disassembly of the actuator while installed on the valve, ensure that the actuator is not under thrust or torque load. If the valve must be left in service, the valve stem must be locked in such a way as to prevent any movement of the valve stem.
- Warning: Do not attempt to remove the spring cartridge cap, housing cover, or stem nut locknut from the actuator while the valve or actuated device is under load.
- Warning: Do not manually operate the actuator with devices other than the installed handwheel and declutch lever. Using force beyond the ratings of the actuator and/or using additive force devices such as cheater bars, wheel wrenches, pipe wrenches, or other devices on the actuator handwheel or declutch lever may cause serious personal injury and/or damage to the actuator and valve.
- Warning: Do not exceed any design limitations or make modifications to this equipment without first consulting Limitorque.
- Warning: Actuators equipped with electrical devices (motors, controls) requiring field wiring must be wired and checked for proper operation by a qualified tradesman.
- Warning: Use of the product must be suspended any time it fails to operate properly.
- Caution: Do not use oversized motor overload heaters. Instead, look for the cause of the overload.
- Caution: Do not operate the valve under motor operation without first setting or checking the limit switch setting and motor direction.
- Caution: Do not force the declutch lever into the motor operation position. The lever returns to this position automatically when the motor is energized.
- Caution: Do not depress the declutch lever during motor operation to stop valve travel.
- Caution: Do not use replacement parts that are not genuine Flowserve Limitorque parts, as serious personal injury and/or damage to the actuator and valve may result.
- Caution: Do not lift actuator/gearbox or actuator/valve combinations with only the eye bolts in the SMB actuator. These eye bolts are designed for lifting the SMB actuator only.
- Eye bolts in SMB and SB actuators are designed for lifting only the actuator and not associated gearboxes or valves.
- Mount the actuator with the motor in a horizontal plane, if possible.
- Keep the switch compartment clean and dry.
- Keep the valve stem clean and lubricated.
- Set up a periodic operating schedule for infrequently used valves.
- Verify all actuator wiring is in accordance with the applicable wiring diagram.
- Carefully check for correct motor rotation direction. If the valve closes when open button is pushed, the motor leads may have to be reversed.
- Verify the stem nut is secured tightly by the locknut and that the top thread of the locknut is crimped or staked in two places.
- Use a protective stem cover. Check valve stem travel and clearance before mounting covers on rising stem valves.
Mead O'Brien Authorized Blue Ribbon Limitorque Parts & Service |
For more information, or if you need field support with any Limitorque actuator, parts, or service, contact one of the following Mead O'Brien offices:
10800 Midwest Industrial Blvd
St. Louis, Missouri 63132
(314) 423-5161
Mead O’Brien, Inc.
1429 Atlantic
North Kansas City, MO 64116
(816) 471-3993
Mead O’Brien, Inc.
16 South Main Street
PO Box 1086
Calvert City, Kentucky 42029-1086
(270) 395-7330
Mead O’Brien, Inc.
824 West Elgin
Broken Arrow, Oklahoma 74012
(918) 251-1588
A Better Alternative to Magmeter for Unpolished Condensate Flow Measurement
Veris Accelabar |
A magnetic flowmeter uses an electric current applied to a coil which produces a magnetic field. When conductive liquid flows through the magnetic field, a small voltage, proportional to the liquid velocity, is induced. As long as the interior surfaces of the Magmeter are clean and unobstructed, the meter accurately measures flow. If they get dirty or coated, all bets are off.
It was in the above mentioned upset situations where the University maintenance people were having problems. When upsets occurred, and the condensate polisher had to be by-passed, it meant the Magmeter would also have to be serviced because accuracy could no longer be guaranteed. Servicing the Magmeter was slow and costly. It meant shutting down the line, draining the pipe, removing the flowmeter, cleaning, and then putting it all back together.
Armstrong International’s Veris Group was called in for a consult. After review, the Veris Group recommended installing an Accelabar® flow meter to offer an alternative solution that could provide reliable flow measurement regardless of an upset condition like unpolished condensate. The Accelabar provided a flow range of 22.5:1 turndown in flow, in a limited straight run scenario. In the past, two transmitters were required to provide the best accuracy across the entire range of the Accelabar. Veris was able to use the Foxboro IDP 10S with its FoxCal™ technology in order to have a combined percent of rate accuracy solution.
The new transmitter installation has 11 separate calibrations loaded into the device. As the differential pressure from the primary element is measured, the transmitter chooses the correct calibration curve. Veris’ solution delivered performance that was previously unattainable with a single differential pressure transmitter.
The Accelabar and Foxboro combined to be best solution, and the Accelabar flow meter is now the University's standard for the boiler feed water measurements.
For more information, contact:
Mead O'Brien, Inc.
10800 Midwest Industrial Blvd
St Louis, MO 63132
314-423-5161
314-423-5707
www.meadobrien.com
Labels:
Accelabar,
Arkansas,
Armstrong,
boiler,
condensate,
feed water,
Foxboro,
Indiana,
Iowa,
Kansas,
Missouri,
Nebraska,
Oklahoma,
Southern Illinois,
Veris,
Western Kentucky
Choose Guided Wave Radar for Your Challenging Process Level Application
Guided Wave Radar Transmitter Courtesy of Foxboro/Schneider Electric |
Electromagnetic pulses are emitted and guided along a probe. These pulses are reflected back at the product surface. The distance is calculated by measuring this transit time. This device is perfect for high-end applications. It is suitable for applications with foam, dust, vapor, agitated, turbulent or boiling surfaces with rapid level changes.
Common features include:
Easy configuration via digital communication; Wide selection of materials facilitates service under harsh/corrosive conditions; Solutions for density/pressure variations and rapid level changes; Empty Tank Spectrum filtering; Quick Noise scanning reduces false radar reflections.
Applications: Steam Generation /Boiler Drum; Oil/Water Separator; BioDiesel Production; Overflow Protection; Interface and Density; Process tanks; Storage tanks; Polyester/Nylon fiber production; Claus Process
For more information on Guided Wave Radar level instruments, contact:
Mead O'Brien
(800) 892-2769
www.meadobrien.com
Subscribe to:
Posts (Atom)