Understanding Vortex Shedding Flow Technology

Foxboro Vortex Shedding Flowmeter
Foxboro Vortex Shedding Flowmeter.
Notice the shedder bar in the flow path.
Photograph of vortice
Photograph of vortices
(credit Jürgen Wagner via Wikipedia)
Vortex shedding flowmeters are a type of flowmeter available to the process industry for the consistent evaluation of flow rates. These flowmeters measure the volumetric flow rate of media such as steam flowing in pipes, gases, and low viscosity liquids, boasting both versatility and dependability. Since they have no moving parts, they are impervious to the kind of wear turbine or mechanical meters experience.

Principles of Operation
A "shedder" bar (also known as a bluff body) in the path of
Animation of vortex creation
Animation of vortices
(credit Cesareo de La Rosa Siqueira
via Wikipedia)
the flowing fluid produces flow disturbances called vortices. The resulting vortex trail is predictable and proportional to the fluid flow rate. This phenomena is know as the "Von Kármán vortex street" (see illustrations to the right). Sensitive electronic sensors downstream of the shedder bar measures the frequency of the vortices and produce a small electrical pulse with every vortex created. The electrical pulses also also proportional to fluid velocity and is the basis for calculating a volumetric flow rate, using the cross sectional area of the flow measuring device.

Typical Areas of Use
Vortex shedding flowmeters are used on steam, cryogenic liquids, hydrocarbons, air, feed water, and industrial gases.

Applications to Avoid
Splitting higher viscosity fluids into concordant vertices is extremely difficult due to the internal friction present, so using vortex shedding flowmeters on high viscosity media should be avoided. Also, avoid applications with low flow rates and low Reynolds Numbers, as the vortices created are unstable.

Consideration for Use
Consideration must be given to applications with low Reynolds numbers, as the generation of vortices declines at critical points of reduced velocity. Low pressure can also be a problem in this regard. Users must take Reynolds number, velocity, and density into consideration before choosing a vortex shedding flow meter. As always, it's best to discuss your application with an knowledgable support professional before specifying, purchasing, or installing this type of flowmeter.

Watch the video below for more information on vortex flow technology.


For more information on  vortex shedding flowmeters, visit https://www.meadobrien.com or call (800) 892-2769.

Inverted Submerged Bucket Steam Traps: How They Work

Diagram of the Armstrong Inverted Bucket Trap
Cutaway diagram of the Armstrong Inverted Bucket Trap.
The inverted submerged bucket steam trap is a mechanical trap that operates on the difference in density between steam and water. Steam entering the inverted submerged bucket causes the bucket to float and close the discharge valve.

Condensate entering the trap changes the bucket to a weight that sinks and opens the trap valve to discharge the condensate. Unlike other mechanical traps, the inverted bucket also vents air and carbon dioxide continuously at steam temperature.

This simple principle of condensate removal was introduced by Armstrong International in 1911. Years of improvement in materials and manufacturing have made today’s Armstrong inverted bucket traps virtually unmatched in operating efficiency, dependability and long life.

For more information on Armstrong steam traps, visit http://www.meadobrien.com or call (800) 892-2769.

Fixed Point Gas Monitoring

Fixed Point Gas Monitor
Fixed Point Gas Monitors (GfG)
In industry, the assessment and control of risk factors is a crucial element of process control. Commanding risk allows not only for peace of mind regarding environments involving hazardous materials, but also ensures ' and prioritizes - the safety of those who work with said materials. Fixed point gas monitoring tracks and repeatedly evaluates the levels of potentially toxic or flammable gases in an industrial environment, typically using electrochemical, infrared, or catalytic bead sensors. A central monitoring station allows for an entire facility to operate under consistent watch, as the array of gas monitors throughout a facility form a system. Typical environments which utilize fixed point gas monitoring include CNG filling stations, fleet maintenance buildings, wastewater lift stations and treatment plants, pipelines, and refineries, among others.

Due to the variation in facilities and associated industrial purposes, the applicability and customization of fixed point monitors must be adaptable. The gases typically monitored by fixed point systems are industrial staples. Natural gas (methane) and hydrogen are inherently dangerous to work with due to both their combustible nature and flammability. Carbon monoxide, hydrogen sulfide, and chlorine are especially dangerous to those who work in and around facilities where they are used or produced, while otherwise harmless gases such as nitrogen can cause oxygen displacement leading to asphyxiation. Around-the-clock is the only way to monitor and mitigate the potential impact of such volatile substances; thanks to automation, the ability to be constantly vigilant of threats related to gases is possible.

Sensing and evaluating these types of gases is a complex process, yet one which also showcases the powers of the associated technology. International certification standards like ATEX (derived from a French regulation acronym) and SIL (the safety integrity level) allow designers of gas detectors to match their products with the necessary parameters to ensure safe working environments. For example, one manufacturer's electrochemical gas sensor operates based on a principle involving two electrodes; the first electrode senses the toxic gas, and then the second electrode receives protons generated by the sensing electrode through an ion conductor. Output current which flows to an external circuit is proportional to the concentration of gas, therefore the current generated is measurable as an indicator of gas levels. Despite the fact that these sensors are primarily used in industry, there is also the potential for domestic applicability, automotive process control, and air quality control, among other uses. The different technological and practical applications of fixed point gas monitors allow for industry professionals to safely and capably navigate working environmental hazards for personnel and process protection.

For more information on fixed point gas detection, contact Mead O'Brien by visiting http://www.meadobrien.com or calling (800) 892-2769.

The Neles B1 Series Actuator

B1-Series
Neles B1 Series
Metso's Neles double acting and spring return B1-Series piston type actuators are designed for use in both modulating control and on-off service. The series B1C and B1J are designed to ISO 5211/1 when Metso linkages are utilized. These actuators offer an extremely long cycle life and are well suited to operate almost any type of rotary valve.

When "stay put" is the requirement, the double acting B1C series is the choice. This series is available in several sizes with torque outputs from 40 Nm to 100 000 Nm (29.5 lbf ft to 73 756 lbf ft) for maximum supply pressure of 10 bar (145 psi).

If a failure mode is required, the spring return B1J series should be selected. This line offers a self-contained spring cartridge to provide failure in either the open or closed position. The spring return actuators are available with a mid-range spring for a 4 bar (58 psi) supply range, a lighter spring for lower supply pressure of 3 bar (44 psi) range and a stronger spring for a 5.5 bar (80 psi) range. These actuators offer torque outputs from 25 Nm to 12000 Nm (18,5 lbf ft to 8851 lbf ft) for maximum supply pressure of 8.5 bar (124 psi).

Adjustable travel stops

As with any Neles pneumatic/hydraulic actuator, adjustable travel stops are standard for both the open and closed positions. End of stroke turning angle range is 85° to 95°. Optional travel stops 0° to 90° are also available.

Wear resistant bearings

High quality bearings provide support on the upper and lower portions of the lever arm to reduce friction and expand the life of both the lever arm and the housing.
Corrosion resistance

The epoxy painted actuators have housings of rugged cast iron, with light-weight aluminum cylinders anodized for added corrosion resistance. Travel stops are stainless steel.

Self-contained spring cartridge

The springs in the B1J actuator are contained in a cartridge for added reliability and easy maintenance.

Spring to open or close capability

The standard spring return actuator on the ball valve can provide spring-to-close or spring-to-open operation sim- ply by changing the mounting position by 90°. On a high performance butterfly valve, the standard unit offers spring-to-close operation. An optional B1JA model is available for spring-to-open requirements.

High-and-low temperature construction

The standard unit can be used in temperatures up to 70 °C (158 °F). High temperature construction is available for temperatures up to 120 °C (248 °F). The standard unit can be used down to -20 °C (-4 °F). A low temperature design is available for -40° to +70 °C (-40° to 158 °F ), arctic service please refer type coding.

High cycle option

For applications where very fast and high frequency operation is required.

ATEX compatibility

Actuator construction ATEX approved.

Oversized cylinder options

The oversized cylinders (B1C 60, 75, 602, 752) are used whenever the supply pressure is limited, thus the actuators can achieve the required torques with a lower supply pressure level.

Override options

Available override devices include a manual centerpiece handle, a manual handwheel override, and a manual hydraulic override for high torque applications.

Emergency shut-down

Emergency Shut-Down (ESD) valves utilizing B1J actuators are offered to assure operation in the event of a fire or plant malfunction.

For more information about Metso Neles actuators, visit http://www.meadobrien.com or call  (800) 892-2769.

Foxboro IMT25 Flow Transmitter Quick Start Video and IOM - Everything You Need

Model IMT25
The Foxboro® brand Model IMT25 Intelligent Magnetic Flow Transmitter uses a pulsed dc technique to excite the Models 8000A, 8300, 9100A, 9200A, 9300A, and 2800 Magnetic Flowtube coils, and convert the low level signal voltage to a digital, 4 to 20 mA, or pulse output.

FEATURES
  • Digital precision, stability, and resolution ensure top measurement performance.
  • Remote communication with HART communication protocol. (For FOUNDATION Fieldbus protocol, refer to PSS 1-6F5 B.)
  • Remote configuration using PC-based configurator or HART Communicator.
  • Local configuration using optional integral keypad, with backlighted, 2-line, LCD display.
  • Scaled pulse or frequency output.
  • Unidirectional or bidirectional flow.
  • Analog output programmable for unidirectional, bidirectional, or multiple input range.
  • Relay outputs with programmable functionality for alarms.
  • Contact inputs with programmable functionality for remote operation.
  • Automatic and manual zero lock.
  • Online diagnostic help.
  • Software configuration and totals protected in nonvolatile memory in the event of power loss.
  • Compact single or dual compartment.
  • Enclosure meets NEMA 4X and IEC IP66.
  • Field test mode using Foxboro Model IMTSIM Magnetic Flowtube Simulator.

Solving Humidification Problems in Campus Science Lab

HumidiClean humidifier
Background

Armstrong International’s representative affiliate, Mead O’Brien, visited Columbia College along with a local specifying engineer to determine a solution to the customer’s humidification problems in campus science labs.

The site was experiencing fluctuations in relative humidity levels due to having only one Dri-Steam GTS-600 (450lbs/hr.) installed. Because the unit was oversized for application, the swings in humidity were causing the relative humidity to exceed the spec.

Scope of Work

To meet the customer’s demand for a larger capacity, Armstrong International supplied two (2) Gas-Fired HumidiCleanTM humidifiers at 310lbs/hr. and header the units together to feed the AHU. The GFH-300s provided accuracy and turndown required to remain in spec.

Benefits

Columbia College recognized the real benefits of supplying two appropriately sized units to accomplish reliable and accurate levels of humidity in the science labs. The customer also has enjoyed the 82% efficiency rating of the GFH-300 as well as the modulated control of steam output. Because of Armstrong’s ionic bed technology, both units have required minimal cleaning and maintenance. Since installation, Columbia College has not experienced any issues with both units.

How to Use the Ashcroft 1305 Deadweight Tester

Ashcroft 1305 deadweight tester
The Ashcroft 1305 deadweight tester provide a precise means for generating pressure with high accuracy that can be used as a primary calibration standard. The unit's built-in shuttle valve provides the means to control the rate of pressure increase, while precision adjustment is accomplished with an integral micro vernier displacement valve. 

This video below provides an overview of how to use the the Ashcroft 1305.

For more information on Ashcroft products, contact Mead O'Brien at (800) 892-2769 or visit http://www.meadobrien.com.