Showing posts with label Armstrong. Show all posts
Showing posts with label Armstrong. Show all posts

See How Easy Steam Trap Audits Can Be with the Armstrong SAGE UMT® Automatic Trap Tester

Armstrong's SAGE UMT® eliminates human error and raises the quality of steam trap testing to a new level. Their state-of-the-art, automatic testing device makes it easy for any steam trap technician to survey your trap population quickly and accurately, on a regular basis. 

Armstrong's SAGE UMT®, used in conjunction with SAGE® Smart Steam System Management platform, is the most comprehensive and advanced trap management program in the industry.

Armstrong's SAGE UMT® syncs wirelessly to the SAGE® Mobile app on your iOS or Android mobile device. SAGE® Mobile then delivers your steam trap information directly to SAGE® Smart Utility System Management platform, eliminating the need to manually enter survey information or decipher illegible field notes.

The SAGE UMT® is just this easy to use:

  • Scan a trap's RFID tag with SAGE UMT®; SAGE® Mobile automatically opens the details for that trap
  • Press the stainless steel probe tip to the trap and press the test button
  • Test progress will be visible on both SAGE UMT® and SAGE® Mobile
  • When testing is complete, SAGE UMT® wirelessly transfers the temperature and acoustic information it has collected to SAGE® Mobile
  • SAGE® Mobile analyzes the data received from SAGE UMT® using - Armstrong's proprietary, UNFCCC-approved, steam system efficiency methodology; based on the results, SAGE® Mobile assigns a condition to the trap
  • SAGE® Mobile stores the trap's data, automatically pushing it to SAGE® - Smart Steam System Management platform
  • SAGE® immediately uploads data to the cloud where it's protected by high-level security and automated backups
  • Customers own their own data

For more information, contact Mead O'Brien. Call them at (800) 874-9655 or visit their website at https://meadobrien.com

Steam and Gas Hot Water Equipment for Industry

Regardless of the method you use to heat water, Armstrong has the intelligent solutions you need. They will show you how to avoid scaling, improve efficiency and safety, and increase your production and yield. Armstrong delivers groundbreaking accuracy, simplicity and unparalleled performance with their advanced steam heated and gas heated solutions. From a single product to a complete, fully integrated system, Armstrong hot water solutions for steam and gas can fulfill your most exacting demands.

Products:
  • Readitemp™ Steam/Water Hot Water System
  • Emech® Industrial Mixing Center
  • Emech® Digital Control Valve
  • Vfd Pump Assembly
  • Hot & Cold Water Hose Stations
  • Flo-Direct® Gas-Fired Water Heater


Humidification Design Checklist: Getting It Right The First Time

It’s not enough for a humidification system to simply add moisture to dry air. Control of relative humidity is essential – even critical – in some applications. Yet, there are a variety of factors and individuals that converge making it complex and challenging to design proper humidification systems.

This white paper, courtesy of Armstrong International, provides important information on all aspects of humidification.

Topics Discussed:
  • Direct Steam Injection (conventional separator type)
  • Direct Steam Injection (short absorption panel type)
  • Steam-to-Steam Humidifiers
  • Electric (steam generating) Humidifiers
  • Gas Fired Humidifiers
  • Fogging Systems (Compressed Air and Water)
  • Fogging Systems (High Pressure Atomizer)


Top Ten List for Improving Process Steam Systems


10. Ensure the steam boiler is sized large enough to meet the current system consumption and possibly future expansion.  Remember: BTUs needed to get feedwater to saturation temperature, and heat loss in piping due to insulation inefficiency.

9. Size steam distribution piping for 6000 FPM velocity below 50 PSIG steam pressure and 8000 FPM velocity for 50 PSIG and above.  Remember: lower steam pressure has higher specific volume than higher pressure.

8. Make sure drip legs with drip steam traps are used to remove condensate from steam distribution lines to prevent thermal shock water hammer and poor quality steam delivered to the heat exchanger.  Remember: drip legs should be about 2 ft. long and the same size as the steam pipe up to 4” and ½ the size of the pipe above 4”

7. Use equal percentage inherent trim characteristic control valves for process temperature control on steam sized to operate between 20 and 80% open, min to max.  Remember:  non-linearity in the form of high gain under partial steam load conditions are plotted as the inverse of the =% curve to become close to linear in the installed trim characteristic applied to the process.

6. Use supplemental thermostatic air vents and vacuum breakers (or a single device that does both) on large cavity heat exchangers.  Remember:  air is an insulator and is detrimental to surface temperature, and vacuum, formed by steam condensing and not replaced with an equivalent volume of steam, prevents the gravity flow of condensate from the exchanger to a steam trap allowing for the potential of thermal shock water hammer and/or internal corrosion.

5. Select the proper steam trap for the application.  On modulated steam applications, the F&T (float & thermostatic) steam trap and inverted bucket steam trap are both acceptable depending on performance characteristics desired. Remember:  steam traps must 1) stop the flow of steam to allow desired steam pressure to be maintained on the heat exchanger while latent heat is transferred to the process, 2) remove condensate in the heat exchanger simultaneously, and 3) remove non-condensable gases.

4. Ensure the steam trap can provide the capacity at low differential and can overcome static head pressure created by an overhead condensate return.  Remember: if that condition can occur, use a mechanical (steam powered) pump as a closed-system in combination with an F&T trap, a double duty type combination device, or a separate open system pump/receiver either mechanical or electric.

3. When the system is operating smoothly and efficiently, look for more ways to increase efficiency by auditing different areas of the generation, distribution, heat transfer, and condensate handling systems periodically and look for opportunities to design and use heat recovery systems.  At a minimum, test steam traps once a year for proper operation, but to eliminate the +/- 6 months of lag time between discovery of failed traps at that one moment in time plus the time it takes to arrange and actually repair or replace the steam trap, consider a wireless steam trap monitoring system, at least for the most process-important or highest pressure steam traps that will have the largest steam loss where discovery of failure is within minutes, the system can self-generate a work order, and the repair can be done quickly.  One such system utilizes either ISA100 or WirelessHART mesh networks reporting to a measurement, monitoring, and reporting software system designed to manage the system effectively.

2. If you don’t really understand the thermodynamics, proper piping techniques, and potential problems that may occur in your steam system, don’t experiment.  Contact someone who has thorough knowledge of steam systems before making that first change.

1. If you do understand your steam heat transfer system, have never instructed someone to “just change out the steam trap, it must be the blame for my system not working correctly since I don’t really know what it does,”  then you may be numbered in that new group: “Steam system practitioner, the making of another Prima Donna”.

List courtesy of Steve Huffman, VP of Sales and Marketing, Mead O'Brien.

The Armstrong SAGE UMT™ Wireless Hand-held Steam Trap Testing Tool


The next-level addition to the most comprehensive and advanced steam trap management platform in the industry has arrived. Introducing SAGE UMT™. Wireless, water resistant, dust proof, rugged, accurate, consistent. SAGE UMT's performance eliminates human error and sets a new standard for trap testing.

It's easier and faster to test traps and instantly, send data to mobile devices and the cloud. And with 10 plus hours of battery life, SAGE UMT™ can go all day long.

SAGE UMT™ comes complete with charger, carrying case, bolster, ergonomic handle design and rubberized grip. All you have to add is the hardhat, the mobile device, and a human.

SAGE UMT™ Wireless Hand-held Steam Trap Testing ToolArmstrong's SAGE UMT™, used in conjunction with SAGE® Smart Steam System Management
platform, is the most comprehensive and advanced trap management program in the industry.
  • Detects traps in good, cold and blow-through condition
  • Piezoelectric acoustic sensor, developed and tuned specifically for the unique conditions found in steam traps
  • Non-contact infrared temperature sensor
  • RFID technology significantly reduces the time required to locate and identify traps
  • SAGE UMT™ works seamlessly with SAGE Mobile and SAGE Smart Utility System Management platform
  • Data is uploaded to the cloud by SAGE for secure storage and automated backups
  • Customers own their own data
  • Use SAGE UMT™ for 10 hours or more before recharging; charge is restored to 90% within 2.5 hours
  • Easy-to-hold, ergonomic handle with rubberized ribbed grip
  • Convenient holster holds SAGE UMT™ securely; configure for right- or left-hand use
  • Lifetime upgrades for SAGE UMT™ firmware at no charge

Measuring the Flow of Vaporized Liquid Natural Gas

Flow control
Veris Accelabar installed on vaporized liquid natural gas line.
Application

A liquid natural gas plant in the Midwest needed to measure gas flow to heaters that vaporize LNG to gaseous natural gas for use during peak periods in the winter season. The company stores LNG in two 12,000,000-gallon tanks and uses gas-fired heaters to vaporize it as required to meet customer demand. For most of the year demand is low (1,000 SCFH); however, during the coldest winter months gas consumption jumps to 60,000 standard cubic feet per hour (SCFH) in a 3” sch 40 line at 80 psig/70° F.




Problem

The plant must account for the gas usage over the entire range as it is part of the operating cost during LNG vaporization, as well as when it is used for plant heating. The customer could not find one meter to accommodate the entire range accurately. The plant had attempted to measure the flow rate with a Roots turbine meter sized for the maximum flow rate, but could not get accurate flow readings at the low end of the measurement range, making it impossible to determine actual usage during the off-peak periods. In addition to accuracy limitations, turbine meters have moving parts that wear and require expensive maintenance. The customer’s operating cost was estimated and charged against the bottom line. In addition, as you can see from the photo, there was no straight run available which hindered a conventional meter’s ability to perform accurately.
Accelabar
Accelabar

Solution

A Model AF 3” 150-H-M Accelabar was installed immediately downstream of a pipe reduction, control valve and pressure regulator. The Accelabar had two Foxboro IDP50 high accuracy DP transmitters directly mounted to the top of the Accelabar sensor. Stacked outputs were required to accommodate the wide turndown in DP of 308.2” w.c. at max and 0.08” w.c. at min.

Results

The Accelabar performed as advertised with ±0.75% accuracy over the entire range of 1,000 to 60,000 SCFH—a flow turndown of 60:1. Because the Accelabar and transmitters have no moving parts to wear or seize, maintenance is minimal. The LNG supplier has found that the flow metering system is user friendly and easy to operate, especially since DP flow measurement is one of the most easily understood of any flow measurement technology available. To the LNG provider, this translates into improved material accountability and lower operating costs to increase profitability.

Reprinted with permission by Veris, a division of Armstrong International.

Why Is Monitoring the Amount of Moisture in a Steam System So Critically Important?

Wet steam is a costly problem across many industries. It causes product quality issues with batch rejection, wet packs and wet loads in sterilizers. Wet culinary steam can make food grade quality of product impossible. Carbon dioxide in a system with wet steam creates carbonic acid that damages pipes. A slug of water causes water hammering, which is destructive and can be deadly. Wet steam causes many flowmeters to be inaccurate, so that if you buy steam from a third party, you may be paying for water rather than steam. Water abrades like sand in a steam pipe and will erode pipes, elbows, valves and other components. Wet steam reduces heat transfer. Wet steam can damage turbines. And wet steam causes thermal stress as condensate cools down.

In fact, steam quality typically refers to the amount of water in the steam, which is also known as dryness fraction. Saturated steam is a mixture of steam and water. The water is often in the form of un-vaporized micro droplets. Dryness fraction is a ratio. The mass of the steam to the mass of the biphasic mixture of water and steam. Part of the difficulty in measuring the steam dryness fraction is that steam systems are dynamic. The steams is moving through the components and conditions change second-by-second. Within this complex system there are many things that contribute to water in the steam. For example, the bursting bubbles from the surface of the boiling water expels small droplets into the flow of steam. Or if there is a sudden increase in demand for steam that reduces pressure above the water, lowering the boiling point and increasing the violence of bubbling. This is sometimes called priming or carryover. Other forms of carryover include water in the system, because the water level in the boiler is too high. Or high concentrations of impurities in the boiler water that reduce the surface tension and so increase the agitation of the water surface. Impurities can also cause the formation of a stable foam above the water surface. This foam causes slugs of water to be intermittently discharged from the boiler along with the steam. Even poor insulation in pipes and valves leads to water in the steam as heat is lost and steam condenses. A steam trap might fail closed, particularly at the bottom of a separator, increasing the amount of condensate in the pipes. The design of steam pipe work and steam traps may be inadequate to handle condensate, or a steam separator may be defective.
Steam QM-1
Armstrong Steam QM-1

Any of these things individually or in combination can cause a problem with dryness fraction. Monitoring the dryness fraction of steam has long been a manual process, time-consuming, inconsistent, unreliable, and presents inherent safety and accuracy risks. Control of your steam quality depends on having consistent, accurate, timely information, and that's where the Armstrong Steam QM-1 comes in.

The Armstrong steam quality monitor steam QM1 provides you with data logging and remote monitoring capabilities. The Steam QM-1 monitors and measures dryness fraction and alerts you of steam quality problems. The video below explains how.

With monitoring by the Steam QM-1 you can:
  • Manage process quality when injecting steam 
  • Ensure foodgrade quality of steam when producing culinary steam 
  • Check dryness of outsource steam 
  • Avoid water hammer 
  • Oversee traps and separators effectiveness 
  • Monitor boiler carryover 
  • Avoid erosion in valves regulators etc 
  • Protect turbine low pressure saturated steam stages 
For more information contact Mead O'Brien by visiting https://meadobrien.com or by calling (800) 892-2769.

How Your Steam Trap Selection Affects Your Bottom Line Profits: Inverted Bucket Trap vs.Thermodynamic Trap

Steam Trap Selection
Below is a white paper, courtesy of Armstrong International, describing how steam trap selection affects profitability. This document compares Inverted Bucket Traps and Thermodynamic Traps.

The ability to monitor and maintain your facility’s steam trap population directly affects your bottom line. Armstrong’s Steam Testing and Monitoring Systems give you the means to achieve best practice steam system management by proactively monitoring your steam trap inventory.

For more information on Armstrong steam and hot water products, visit Mead O'Brien at https://meadobrien.com of call (800) 892-2769.


Steam Trapping and Steam Tracing Equipment

Inverted Bucket Steam Trap
Inverted Bucket Steam Trap
(Armstrong)
An efficient steam trap wastes less energy, which means you burn less fuel and reduce emissions. The results are energy savings and a cleaner, healthier environment. By helping companies manage energy, Armstrong steam traps are also helping protect the world we all share.

As a steam trap wears, it loses efficiency and begins to waste energy. But Armstrong inverted bucket traps last years longer than other traps. They operate more efficiently longer because the inverted bucket is the most reliable steam trap operating principle known.

Clearly, the longer an efficient trap lasts, the more it reduces energy wasted, fuel burned and pollutants released into the air. It’s an all-around positive situation that lets the environment win, too. Bringing energy down to earth in your facility could begin with a renewed focus on your steam system, especially your steam traps. Said another way: Zeroing in your steam traps is an easy way to pay less money for energy—and more attention to the environment.

Companies around the world are beginning to realize that rather than being separate challenges, energy and the environment are and have always been a single mission. And that quality management in one area will surely impact the other.

The catalog below should be utilized as a guide for the installation and operation of steam trapping equipment. Selection or installation should always be accompanied by competent technical assistance or advice. Armstrong and its local representatives are available for consultation and technical assistance. We encourage you to contact your Armstrong Representative for complete details.

The Orifice Plate: Great for Gases, Clean Liquids, and Low Velocity Steam

Orifice Plate
Orifice plate mounted in flange and alone.
Courtesy of Armstrong International.
An orifice plate, at its simplest, is a plate with a machined hole in it. Carefully control the size and shape of the hole, mount the plate in a fluid flow path, measure the difference in fluid pressure between the two sides of the plate, and you have a simple flow measurement setup. The primary flow element is the differential pressure across the orifice. It is the measurement from which flow rate is inferred. The differential pressure is proportional to the square of the flow rate.

Orifice plates are the most commonly used differential pressure measurement device and are applicable for measurements in gases, clean liquids, and low velocity steam.  Orifice plates allow for relatively easy installation and replacement if necessitated by changes in process parameters or life cycle deterioration.

An orifice plate is often mounted in a customized holder or flange union that allows removal and inspection of the plate. A holding device also facilitates replacement of a worn orifice plate or insertion of one with a different size orifice to accommodate a change in the process. While the device appears simple, much care is applied to the design and manufacture of orifice plates. The flow data obtained using an orifice plate and differential pressure depend upon well recognized characteristics of the machined opening, plate thickness, and more. With the pressure drop characteristics of the orifice fixed and known, the measuring precision for differential pressure becomes a determining factor in the accuracy of the flow measurement.
Orifice plate configurations
Orifice plate configurations (click for larger view).
There are standards for the dimensional precision of orifice plates that address:
  • Circularity of the bore
  • Flatness
  • Parallelism of the faces
  • Edge sharpness
  • Surface condition
Orifice plates can be effectively "reshaped" by corrosion or by material deposits that may accumulate from the measured fluid. Any distortion of the plate surface or opening has the potential to induce measurable error. This being the case, flow measurement using an orifice plate is best applied with clean fluids.

Certain aspects of the mounting of the orifice plate may also have an impact on its adherence to the calibrated data for the device. Upstream and downstream pipe sections, concentric location of the orifice in the pipe, and location of the pressure measurement taps must be considered.
orifice plate
Orifice plate between two flanges.
Properly done, an orifice plate and differential pressure flow measurement setup provides accurate and stable performance. Share your flow measurement challenges of all types with a specialist, combining your own process knowledge and experience with their product application expertise to develop an effective solution.

Download a cut sheet for Armstrong orifice plates and flanges from this Mead O'Brien link.

For more information, call (800) 892-2769 or visit https://meadobrien.com.

Inverted Submerged Bucket Steam Traps: How They Work

Diagram of the Armstrong Inverted Bucket Trap
Cutaway diagram of the Armstrong Inverted Bucket Trap.
The inverted submerged bucket steam trap is a mechanical trap that operates on the difference in density between steam and water. Steam entering the inverted submerged bucket causes the bucket to float and close the discharge valve.

Condensate entering the trap changes the bucket to a weight that sinks and opens the trap valve to discharge the condensate. Unlike other mechanical traps, the inverted bucket also vents air and carbon dioxide continuously at steam temperature.

This simple principle of condensate removal was introduced by Armstrong International in 1911. Years of improvement in materials and manufacturing have made today’s Armstrong inverted bucket traps virtually unmatched in operating efficiency, dependability and long life.

For more information on Armstrong steam traps, visit http://www.meadobrien.com or call (800) 892-2769.

Solving Humidification Problems in Campus Science Lab

HumidiClean humidifier
Background

Armstrong International’s representative affiliate, Mead O’Brien, visited Columbia College along with a local specifying engineer to determine a solution to the customer’s humidification problems in campus science labs.

The site was experiencing fluctuations in relative humidity levels due to having only one Dri-Steam GTS-600 (450lbs/hr.) installed. Because the unit was oversized for application, the swings in humidity were causing the relative humidity to exceed the spec.

Scope of Work

To meet the customer’s demand for a larger capacity, Armstrong International supplied two (2) Gas-Fired HumidiCleanTM humidifiers at 310lbs/hr. and header the units together to feed the AHU. The GFH-300s provided accuracy and turndown required to remain in spec.

Benefits

Columbia College recognized the real benefits of supplying two appropriately sized units to accomplish reliable and accurate levels of humidity in the science labs. The customer also has enjoyed the 82% efficiency rating of the GFH-300 as well as the modulated control of steam output. Because of Armstrong’s ionic bed technology, both units have required minimal cleaning and maintenance. Since installation, Columbia College has not experienced any issues with both units.

Direct Steam Injection Humidifier Replacement in Large Hospital

Direct Steam Injection Humidifier Replacement in Large Hospital
Direct Steam Injection Humidifier Replacement
at St. Louis Children's Hospital
The St. Louis Children’s Hospital is one of the premier children’s hospitals in the United States. It serves not just the children of St. Louis, but children and their families from across the world. The hospital provides a full range of pediatric services to the St. Louis metropolitan area and primary service region covering six states. As the pediatric teaching hospital for Washington University School of Medicine, the hospital offers nationally recognized programs for physician training and research. The hospital employees 3,000 people as well as 800 medical staff members. There are also 1,300 auxiliary members and volunteers on-site.

St. Louis Children’s Hospital was undergoing a significant renovation and determined that the original direct steam injection humidifiers that were installed over 30 years ago needed to be replaced. Within 30 years, they had only experienced minor issues due to the age and use of the humidifiers. Most issues were labeled as manifold o-ring leaks or actuator leakage (either seal kits or diaphragms).

St. Louis Children’s Hospital consulted with their local Armstrong representative, Mead O’Brien, and looked at using direct steam injection humidifiers with electric actuators versus the atmospheric steam generating humidifier. Due to the maintenance, space concerns, and, most importantly, the controllability, Mead O’Brien suggested direct steam injection humidifiers.

When replacing humidifiers during a renovation it is important to analyze the absorption distance. There are many different variables that can affect the absorption distance and, in this case, guidelines and regulations have changed over 30 years since original installation. The amount of outside air brought into the space directly affects the RH levels, and in the healthcare industry, the minimum requirement of fresh air has changed multiple times in the past 30 years. Because of this, some installations required the use of multiple manifolds to shorten the absorption distance.

During this first phase of the renovation, thirty-nine (39) new steam humidifiers were installed. Thirty-four more we supplied the following year..

In addition, the following Armstrong products were also installed:
  • Six Pressure Reducing Valves 
  • Three Electric Condensate Pumps 
  • One Armstrong Flo-Rite
  • Five VERIS Flow Meters
Because of the customer’s relationship with their local Armstrong representative, St. Louis Children’s Hospital received a quality solution that was designed to meet all of their needs and will be supported by Armstrong for many years to come.

Click this link to download the PDF version of this steam injection humidifier application note.

A Very Unique "No Straight Run Required" Flowmeter

VERIS Accelabar
VERIS Accelabar Detail
The VERIS Accelabar® is a unique flow meter that combines two differential pressure technologies to produce performance never before attainable in a single flow meter.

The VERIS Accelabar® is capable of measuring gases, liquids, and steam at previously unattainable flow rate turndowns—with no straight run requirements.

No Straight Run Required

The VERIS Accelabar® can be used in extremely limited straight run piping configurations. All necessary straight run is integral to the meter. The stabilization and linearization of the velocity profile within the throat of the nozzle eliminates the need for any upstream or downstream pipe runs.

Read the document below for more information or download the VERIS Accelabar® PDF from Mead O'Brien's website here.

Common Industrial and Commercial Process Heating Methodologies

Gas Steam Boiler
Fuel boiler producing steam.
Process heating methodologies can be grouped into four general categories based on the type of fuel consumed:
  1. Steam
  2. Fuel
  3. Electric
  4. Hybrid systems
These technologies are based upon conduction, convection, or radiative heat transfer mechanisms - or some combination of these. In practice, lower-temperature processes tend to use conduction or convection, whereas high-temperature processes rely primarily on radiative heat transfer. Systems using each of the four energy types can be characterized as follows:

STEAM


Heat Exchanger
Tube heat exchanger.
Steam-based process heating systems introduce steam to the process either directly (e.g., steam sparging) or indirectly through a heat transfer mechanism. Large quantities of latent heat from steam can be transferred efficiently at a constant temperature, useful for many process heating applications. Steam-based systems are predominantly used by industries that have a heat supply at or below about 400°F and access to low-cost fuel or byproducts for use in generating the steam. Cogeneration (simultaneous production of steam and electrical power) systems also commonly use steam-based heating systems. Examples of steam-based process heating technologies include boilers, steam spargers, steam-heated dryers, water or slurry heaters, and fluid heating systems.

FUEL


Fuel-based process heating systems generate heat by combusting solid, liquid, or gaseous fuels, then transferring the heat directly or indirectly to the material. Hot combustion gases are either placed in direct contact with the material (i.e., direct heating via convection) or routed through radiant burner tubes or panels that rely on radiant heat transfer to keep the gases separate from the material (i.e., indirect heating).  Examples of fuel-based process heating equipment include furnaces, ovens, red heaters, kilns, melters, and high-temperature generators.

ELECTRICITY


Electricity-based process heating systems also transform materials through direct and indirect processes. For example, electric current is applied directly to suitable materials to achieve direct resistance heating; alternatively, high-frequency energy can be inductively coupled to suitable materials to achieve indirect heating. Electricity-based process heating systems are used for heating, drying, curing, melting, and forming. Examples of electricity-based process heating technologies include electric arc furnace technology, infrared radiation, induction heating, radio frequency drying, laser heating, and microwave processing.

HYBRID


Hybrid process heating systems utilize a combination of process heating technologies based on different energy sources and/or heating principles to optimize energy performance and increase overall thermal efficiency. For example, a hybrid boiler system may combine a fuel-based boiler with an electric boiler to take advantage of access to lower off-peak electricity prices. In an example of a hybrid drying system, electromagnetic energy (e.g., microwave or radio frequency) may be combined with convective hot air to accelerate drying processes; selectively targeting moisture with the penetrating electromagnetic energy can improve the speed, efficiency, and product quality as compared to a drying process based solely on convection, which can be rate-limited by the thermal conductivity of the material. Optimizing the heat transfer mechanisms in hybrid systems offers a significant opportunity to reduce energy consumption, increase speed/throughput, and improve product quality.

The experts at Mead O'Brien are always available to assist you with any process heating application. Visit http://meadobrien.com or call (800) 892-2769 for more information.

Condensate Drainage ... Why It’s Necessary in Industrial Steam Systems

condensate drain
Condensate drain
(Armstrong).
Abstracted with permission from Armstrong International

Condensate is the by-product of heat transfer in a steam system. It forms in the distribution system due to unavoidable radiation. It also forms in heating and process equipment as a result of desirable heat transfer from the steam to the substance heated. Once the steam has condensed and given up its valuable latent heat, the hot condensate must be removed immediately. Although the available heat in a pound of condensate is negligible as compared to a pound of steam, condensate is still valuable hot water and should be returned to the boiler.

The need to drain the distribution system.
Condensate Drainage
Figure 1: Condensate allowed to collect in pipes or tubes
is blown into waves by steam passing over it until it blocks
steam flow at point A. Condensate in area B causes a pressure
differential that allows steam pressure to push the slug
of condensate along like a battering ram.

Condensate lying in the bottom of steam lines can be the cause of one kind of water hammer. Steam traveling at up to 100 miles per hour makes “waves” as it passes over this condensate (Fig. 1). If enough condensate forms, high-speed steam pushes it along, creating a dangerous slug that grows larger and larger as it picks up liquid in front of it. Anything that changes the direction—pipe fittings, regulating valves, tees, elbows, blind flanges—can be destroyed. In addition to damage from this “battering ram,” high-velocity water may erode fittings by chipping away at metal surfaces.

The need to drain the heat transfer unit. 

Condensate Drainage
Figure 2: Coil half full of condensate can’t
work at full capacity.
When steam comes in contact with condensate cooled below the temperature of steam, it can produce another kind of water hammer known as thermal shock. Steam occupies a much greater volume than condensate, and when it collapses suddenly, it can send shock waves throughout the system. This form of water hammer can damage equipment, and it signals that condensate is not being drained from the system. Obviously, condensate in the heat transfer unit takes up space and reduces the physical size and capacity of the equipment. Removing it quickly keeps the unit full of steam (Fig. 2). As steam condenses, it forms a film of water on the inside of the heat exchanger. Non-condensable gases do not change into liquid and flow away by gravity. Instead, they accumulate as a thin film on the surface of the heat exchanger—along with dirt and scale. All are potential barriers to heat transfer (Fig. 3).

The need to remove air and CO2. 

Air is always present during equipment start-up and in the boiler feedwater. Feedwater may also contain dissolved carbonates, which release carbon dioxide gas. The steam velocity pushes the gases to the walls of the heat exchangers, where they may block heat transfer. This compounds the condensate drainage problem, because these gases must be removed along with the condensate.

Fig 3: Potential barriers to heat transfer: steam heat and temperature
 must penetrate these potential barriers to do their work.


For more information about any industrial steam or hot water system, contact Mead O'Brien by visiting www.meadobrien.com or call (800) 892-2769.

Train Your People for Better Plant Steam and Hot Water Systems

Do the people who maintain your plant’s steam system really understand how to save you money?

It's probably a good idea to have them attend a professional steam and hot water training seminar. These programs provide a window into elements of the plant steam cycle as they observe live steam and condensate behavior in glass piping and glass-bodied steam traps under differing conditions. They gain very useful knowledge regarding:
  • Steam generation 
  • Distribution 
  • Control & Heat transfer 
  • Heat Recovery opportunities 
  • Condensate removal & return
Mead O'Brien, a company with decades of experience in industrial and commercial steam and hot water systems provides such training. See their video below:

The Application of Heat in Industrial Applications

Heat exchanger
Heat exchanger (courtesy of Armstrong)
The measurement and control of heat related to fluid processing is a vital industrial function, and relies on regulating the heat content of a fluid to achieve a desired temperature and outcome.

The manipulation of a substance's heat content is based on the central principle of specific heat, which is a measure of heat energy content per unit of mass. Heat is a quantified expression of a systems internal energy. Though heat is not considered a fluid, it behaves, and can be manipulated, in some similar respects. Heat flows from points of higher temperature to those of lower temperature, just as a fluid will flow from a point of higher pressure to one of lower pressure. 

A heat exchanger provides an example of how the temperature of two fluids can be manipulated to regulate the flow or transfer of heat. Despite the design differences in heat exchanger types, the basic rules and objectives are the same. Heat energy from one fluid is passed to another across a barrier that prevents contact and mixing of the two fluids. By regulating temperature and flow of one stream, an operator can exert control over the heat content, or temperature, of another. These flows can either be gases or liquids. Heat exchangers raise or lower the temperature of these streams by transferring heat between them. 

Recognizing the heat content of a fluid as a representation of energy helps with understanding how the moderation of energy content can be vital to process control. Controlling temperature in a process can also provide control of reactions among process components, or physical properties of fluids that can lead to desired or improved outcomes.
 
Heat can be added to a system in a number of familiar ways. Heat exchangers enable the use of steam, gas, hot water, oil, and other fluids to deliver heat energy. Other methods may employ direct contact between a heated object (such as an electric heating element) or medium and the process fluid. While these means sound different, they all achieve heat transfer by applying at least one of three core transfer mechanisms: conduction, convection, and radiation. Conduction involves the transfer of heat energy through physical contact among materials. Shell and tube heat exchangers rely on the conduction of heat by the tube walls to transfer energy between the fluid inside the tube and the fluid contained within the shell. Convection relates to heat transfer due to the movement of fluids, the mixing of fluids with differing temperature. Radiant heat transfer relies on electromagnetic waves and does not require a transfer medium, such as air or liquid. These central explanations are the foundation for the various processes used to regulate systems in industrial control environments.

The manner in which heat is to be applied or removed is an important consideration in the design of a process system. The ability to control temperature and rate at which heat is transferred in a process depends in large part on the methods, materials, and media used to accomplish the task. 

Pressure Reducing Valves and Temperature Regulators

Pressure reducing valves
Pressure reducing valves
(courtesy of Armstrong)
Pressure reducing valves (PRVs) and temperature regulators help you manage steam, air and liquid systems safely and efficiently. And they ensure uninterrupted productivity by maintaining constant pressure or temperature for process control.

Steam, liquids and gases usually flow at high pressure to the points of use. At these points, a pressure reducing valve lowers the pressure for safety and efficiency, and to match the requirements of the application. There are three types of PRVs.

  1. Direct-Acting. The simplest of PRVs, the direct-acting type, operates with either a flat diaphragm or convoluted bellows. Since it is self-contained, it does not need an external sensing line downstream to operate. It is the smallest and most economical of the three types and is designed for low to moderate flows. Accuracy of direct-acting PRVs is typically +/- 10% of the downstream set point.
  2. Internally Piloted Piston-Operated. This type of PRV incorporates two valves-a pilot and main valve-in one unit. The pilot valve has a design similar to that of the direct-acting valve. The discharge from the pilot valve acts on top of a piston, which opens the main valve. This design makes use of inlet pressure in opening a large main valve than could otherwise be opened directly. As a result, there is greater capacity per line size and greater accuracy (+/- 5%) than with the direct-acting valve. As with direct-acting valves, the pressure is sensed internally, eliminating the need for an external sensing line.
  3. Externally Piloted. In this type, double diaphragms replace the piston operator of the internally piloted design. This increased diaphragm area can open a large main valve, allowing a greater capacity per line size than the internally piloted valve. In addition, the diaphragms are more sensitive to pressure changes, and that means accuracy of +/- 1%. This greater accuracy is due to the location, external to the valve, of the sensing line, where there is less turbulence. This valve also offers the flexibility to use different types of pilot valves (i.e., pressure, temperature, air- loaded, solenoid or combinations).
Designed for steam, water and non-corrosive liquid service, self-actuated temperature regulators are compact, high-performance units. They operate simply and are therefore suitable for a wide variety of applications. Flexible mounting positions for the sensor, interchangeable capillaries and varied temperature ranges make installation, adjustment and maintenance quick and easy.

For more information on pressure reducing valves, contact Mead O'Brien at (800) 892-2769 or visit http://www.meadobrien.com.

A Modern Industrial Hot Water System Saves Money Through Efficiency and Safety

Hot water heating systems
State-of-the-art hot water heating systems
improve efficiency and safety, and
increase production and yield.
The use of hot water systems for process heating pre-dates World War II, and initiated an ongoing effort for engineered materials to accommodate higher pressures and temperatures. After WWII the need for instantaneous hot water generation, distribution and precise temperature control for industrial applications continued to rise. High temperature hot water systems became increasingly popular because they were relatively inexpensive to install, provided long operating life, and were inexpensive to operate and maintain. Their closed system design made these systems more tolerant to corrosion and scale, while the use of pumps eliminated the need for complex piping for managing condensate.

By developing a comprehensive strategy that includes state-of-the-art water heaters, water temperature controls, hose stations, variable frequency drive (VFD) pump assemblies and ancillary accessories such as storage tanks, and pressure-reducing valves, processing plants can improve efficiency and safety, and increase production and yield.

Advanced hot water heating systems typically include:
  • Steam/water hot water systems with digital control technology and instantaneous heat exchanger design—shell and tube or plate and frame.
  • Industrial mixing center with digital control valves, pre-piped as an IMC with requisite installation components for compact design and ease of installation.
  • Digital control valves for delivering hot water immediately on demand, and maintained at precision temperatures (+/-1°F, +/-0.5°C).
  • VFD pump assemblies application-engineered and configured for your site.
  • Hot & cold water hose stations with thermostatic mixing valves that replaces the old, basic Y as the temperature controller.
The brochure below, courtesy of Armstrong International, provides more insight where specific components are used.