Showing posts with label plant steam. Show all posts
Showing posts with label plant steam. Show all posts

Decarbonization and Industrial Plant Steam Production and Management

Decarbonization and Industrial Plant Steam Production and Management

Decarbonization is the process of reducing the carbon emissions of an industrial process plant, with the goal of mitigating the negative impacts of climate change. There are several approaches that industrial process plants can take to decarbonize their operations:
  • Energy efficiency: Improving the efficiency of energy-consuming processes can help to reduce the amount of energy needed to operate the plant, which can in turn reduce carbon emissions. This can be achieved through a variety of measures, such as upgrading equipment, optimizing process control, and implementing energy-saving technologies.
  • Renewable energy: Replacing fossil fuel energy sources with renewable energy sources, such as solar, wind, and hydroelectric power, can help to reduce carbon emissions from the plant.
  • Carbon capture and storage: Carbon capture and storage (CCS) technologies capture carbon dioxide emissions from industrial processes and store them underground, preventing them from being released into the atmosphere. While CCS is still in the early stages of development, it has the potential to significantly reduce carbon emissions from industrial process plants.
  • Process optimization: Optimizing the processes used in the plant can help to reduce energy consumption and carbon emissions. This can be achieved through process redesign, process integration, and other techniques that improve efficiency and reduce waste.
  • Process substitution: Replacing high-carbon processes with lower-carbon alternatives can help to reduce the overall carbon emissions of the plant. For example, a plant that uses coal to generate electricity could switch to natural gas, which has lower carbon emissions per unit of energy produced.
In the context of steam process heating, decarbonization can be achieved through a variety of approaches, such as:
  • Switching to a low-carbon or carbon-neutral fuel source: One way to decarbonize steam process heating is to switch from a fossil fuel, such as natural gas or coal, to a low-carbon or carbon-neutral fuel source, such as biomass or biogas. This can significantly reduce the carbon emissions of the steam process heating system.
  • Improving energy efficiency: Another way to decarbonize steam process heating is to focus on improving the energy efficiency of the system. This can be achieved through various measures such as insulating steam pipes, using energy-efficient boilers, and optimizing the steam distribution system.
  • Capturing and storing carbon emissions: In some cases, it may not be possible to completely eliminate carbon emissions from steam process heating. In such cases, capturing and storing the emissions through techniques such as carbon capture and storage (CCS) can help to mitigate their impact on the environment.
  • Using renewable energy sources: Another option for decarbonizing steam process heating is to use renewable energy sources, such as solar, wind, or hydroelectric power, to generate the steam. This can greatly reduce the carbon emissions associated with the process.

Overall, decarbonization of industrial process plants requires a combination of approaches, depending on the specific circumstances of the plant and its operations.

Mead O'Brien will provide expert consultation and advisory services to assist you in reducing your carbon footprint in the production and management of steam. Call them at (800) 892-2769 or visit https://meadobrien.com.

Mead O'Brien 2019 Steam Seminar Registration is Now Open

Steam SeminarDo the people who maintain your plant’s steam system really understand how to save you money?

The Mead O’Brien Steam Seminar provides you a window into elements of the plant steam cycle as you observe live steam and condensate behavior in glass piping and glass-bodied steam traps under differing conditions. You will gain useful knowledge regarding:
  • Steam generation
  • Distribution
  • Control & Heat transfer
  • Heat Recovery opportunities
  • Condensate removal & return
Follow this link to sign up.

SAMPLE AGENDA

Steam System System-Wide Objective 

  • Basics of steam 
  • Steam energy facts 
  • Thermodynamic relationships 
  • Steam table uses 
  • Video: What is Steam? 
  • Steam system-wide components

Steam Traps 


  • What it is, where it fits, how it works 
  • Function and Operation of generic Steam Trap types How they operate against typical characteristics 
  • Testing techniques 
  • Troubleshooting and Video 
  • Functional problems associated with Steam traps 
  • Tools to maintain an efficient steam system 
  • Surveys and assessments 
  • Continuous monitoring 
  • SteamStar™

Distribution systems 


  • Functional problems associated with Distribution Systems Effects of not removing condensate formed in the system Water Hammer and Corrosion 
  • Differential Shock water hammer demonstration 
  • Piping for effectively removing the condensate 
  • PRVs: Use and effect on the steam distribution system Video: Guidelines for Steam System efficiency 

Steam usage systems (heat transfer) 


  • Different heat transfer devices 
  • Functional problems associated with heat transfer systems Process control considerations & challenges 
  • Pressure zone and partial load example 
  • What the control people usually don’t consider 
  • Stall and how to overcome it 
  • Vacuum Breakers and TAVs (thermostatic air vents) Control modes and unintended consequences 
  • Leaving the pressure zone

Condensate return systems 


  • System efficiencies 
  • Electric condensate pumps: operation and advantages Mechanical condensate pumps; operation and advantages Open and closed systems: advantages & disadvantages Stall review and solutions 
  • Flash systems and heat recovery options 
  • Back to the boiler house: Deaerators and their function
For more information, or to sign up, visit this web site - https://events.meadobrien.com