Showing posts with label energy efficiency. Show all posts
Showing posts with label energy efficiency. Show all posts

Decarbonization and Industrial Plant Steam Production and Management

Decarbonization and Industrial Plant Steam Production and Management

Decarbonization is the process of reducing the carbon emissions of an industrial process plant, with the goal of mitigating the negative impacts of climate change. There are several approaches that industrial process plants can take to decarbonize their operations:
  • Energy efficiency: Improving the efficiency of energy-consuming processes can help to reduce the amount of energy needed to operate the plant, which can in turn reduce carbon emissions. This can be achieved through a variety of measures, such as upgrading equipment, optimizing process control, and implementing energy-saving technologies.
  • Renewable energy: Replacing fossil fuel energy sources with renewable energy sources, such as solar, wind, and hydroelectric power, can help to reduce carbon emissions from the plant.
  • Carbon capture and storage: Carbon capture and storage (CCS) technologies capture carbon dioxide emissions from industrial processes and store them underground, preventing them from being released into the atmosphere. While CCS is still in the early stages of development, it has the potential to significantly reduce carbon emissions from industrial process plants.
  • Process optimization: Optimizing the processes used in the plant can help to reduce energy consumption and carbon emissions. This can be achieved through process redesign, process integration, and other techniques that improve efficiency and reduce waste.
  • Process substitution: Replacing high-carbon processes with lower-carbon alternatives can help to reduce the overall carbon emissions of the plant. For example, a plant that uses coal to generate electricity could switch to natural gas, which has lower carbon emissions per unit of energy produced.
In the context of steam process heating, decarbonization can be achieved through a variety of approaches, such as:
  • Switching to a low-carbon or carbon-neutral fuel source: One way to decarbonize steam process heating is to switch from a fossil fuel, such as natural gas or coal, to a low-carbon or carbon-neutral fuel source, such as biomass or biogas. This can significantly reduce the carbon emissions of the steam process heating system.
  • Improving energy efficiency: Another way to decarbonize steam process heating is to focus on improving the energy efficiency of the system. This can be achieved through various measures such as insulating steam pipes, using energy-efficient boilers, and optimizing the steam distribution system.
  • Capturing and storing carbon emissions: In some cases, it may not be possible to completely eliminate carbon emissions from steam process heating. In such cases, capturing and storing the emissions through techniques such as carbon capture and storage (CCS) can help to mitigate their impact on the environment.
  • Using renewable energy sources: Another option for decarbonizing steam process heating is to use renewable energy sources, such as solar, wind, or hydroelectric power, to generate the steam. This can greatly reduce the carbon emissions associated with the process.

Overall, decarbonization of industrial process plants requires a combination of approaches, depending on the specific circumstances of the plant and its operations.

Mead O'Brien will provide expert consultation and advisory services to assist you in reducing your carbon footprint in the production and management of steam. Call them at (800) 892-2769 or visit https://meadobrien.com.

Benchmarking Energy Consumption of Equipment and Facilities

Benchmarking Energy Consumption

Note: The following post discusses energy consumption and benchmarking in general. As you'll see, the most significant component of plant energy consumption is typically process heating/steam consumption. Mead O'Brien, along with products and technologies from Armstrong International, Shannon Global Energy Solutions and Everactive, has the people, equipment, and experience to assist you in developing a strategy to significantly improve your plant steam and hot water systems conservation efforts. Contact Mead O'Brien for more information.


While each manufacturing facility and production process is unique, every industry uses similar equipment. Most facilities' major energy consumers concentrate energy use on a few basic systems: lighting, process heating, steam generation, compressed air, pumping, and fans. Making a list of Significant Energy Users (SEUs) can assist in focusing efforts on projects that will result in the most significant savings. 


To create a list of SEUs, group equipment by location, type, or process, and record information such as estimated operating hours, rated power, and loading. The diagram below depicts the various systems and equipment that consume energy in a typical plant and the differences in potential energy savings between facility systems. 


Plant Energy Consumers

The 80/20 rule applies here. Eighty percent of energy consumption is accounted for by 20 percent of the equipment or processes. Only a few energy systems typically consume most of the energy at a site. Consider concentrating your efforts on these systems.

 

Comparing facilities, processes, or equipment over time is the baseline. 
Benchmarking: Comparing the energy performance of facilities, techniques, or equipment over time to similar internal or external facilities. 


Benchmarking the performance of your SEUs is a great place to start on your energy-saving journey. If you work in a multi-facility organization, you can use benchmarking to compare facilities and combine the results to identify best practices. Even if you only have one facility, benchmarking against similar equipment within your facility allows you to identify areas for improvement and best practices of your own. 


Benchmarking can include practices such as understanding, comparing, and optimizing maintenance measures and equipment energy use (such as boiler blowdown or compressed air leaks). 


Benchmarking your energy data allows manufacturers to compare their equipment, process, or facility to others and identify potential energy savings opportunities. Benchmarking understands how you currently operate (for example, how much energy your plant or a single SEU uses) and compares that to similar operations. 


Benchmarking internally (comparing similar steam boilers in the same facility), company-wide (comparing air compressors in different facilities), industry-wide (information from surveys, trade groups, etc.), or all three. Benchmarking can be intimidating for many small manufacturers because, unlike your larger industry peers, you don't have a large pool of plants, manufacturing lines, and heavy equipment for a fair comparison. However, even the smallest manufacturers must compare their major energy users to best practices. 


Energy savings occur in systems such as compressed air, steam generation/distribution, or process heating. Determine the types of energy resources used by each piece of machinery or process. A paint booth, for example, will use compressed air to spray the paint, exhaust fans, and process heating to cure the painted product. This activity will aid in the identification of individual energy-consuming systems and their supporting equipment. 


Small or medium-sized manufacturers may lack a large energy team, a large budget, or the resources to conduct large-scale energy audits or significant equipment overhauls. Turning to outside experts can be extremely helpful provide proven expertise all for reasonable costs.


Call a Mead O'Brien steam/hot water efficiency expert to help you establish your energy conservation plan.


Mead O'Brien
(800) 874-9655

A Commitment to Sustainability Starts With A Strong Value System and A Principled Approach to Doing Business

Commitment to Sustainability

Mead O'Brien Mission

"In partnership with our employees and principals, we provide product-based solutions and service to people dedicated to improving energy efficiency, improving production, and providing a safe working environment."

Mead O'Brien's sustainability efforts focus on three pillars - energy efficiency, improved production, and safe working environments - and the critical importance they present to our customer base. Mead O'Brien is fortunate to have partners and products that provide our client base with technologies and solutions that make meaningful contributions to a more sustainable future. We have strong relationships with world-leading decarbonization technology innovators like Armstrong International, Neles, Ashcroft, Parker, Shannon Global Energy Solutions, Everactive, and many others. These relationships assist us in making industrial plants more energy-efficient while improving throughput, reliability, product quality, and personal safety related to factory production and plant processes.
 

Carbon footprint reduction, increased throughput, and safety is our goal. 

Mead O'Brien and our partners help in decarbonization and sustainability through:
  • Benchmarking Energy Consumption
  • Analytical Measurements for Steam or Hot Water Generation
  • Use of Instrumentation to Increase Throughput
  • Use of Instrumentation to Increase Safety
  • Control Environmental Leakage Rates Through Valves
  • Optimize Valve Selection & Automation for Reliability
  • Applications of Appropriate Safety Approvals Such as FM, API, NFPA, ANSI
  • Valve Assembly and Testing Documentation
For more information about the intersection of industrial plant automation, sustainability and decarbonization, contact Mead O'Brien. Call (800) 874-9655 or visit https://meadobrien.com.

Thermal Acoustic Blanket Insulation Solutions for the Power Generation Industry


Shannon Global Energy Solutions engineers and manufactures reusable blanket insulation and shields for manufacturing plants, power generation facilities, universities, hospitals, oil and gas facilities, and government buildings for energy conservation, thermal efficiency, noise reduction, and safety.

SOLUTIONS FOR THE POWER GENERATION INDUSTRY

Pre-engineered thermal acoustical insulation system designed to minimize insulation maintenance, improve engine performance and improve the surrounding work environment.

Eliminates the problems associated with conventional cement block insulation in which heat is readily conducted through the solid parts of the walls such as block webs and joints.

Removable and reusable. Blanket pieces can be installed and removed using in-house personnel. By following an installation assembly drawing, blanket pieces can be installed in tag number sequence.

Custom fit, through CAD/CNC technology allowing versatility in equipment coverage. Varying blanket designs will accommodate operating temperatures to 1500°F (815°C). Our exact fit approach assures a high quality reusable system.

Many Products / Many Solutions which are application specific to meet the exact requirement. Shannon's library of proven design specifications are ASTM / ISO and UL tested to meet industry standards, assuring quality and performance. Each blanket specification will accommodate Thermal, Acoustic and Safety performance unmatched in the industry to assure a 15 year service life.

For more information, contact Mead O'Brien. Call (800) 874-9655 or visit https://meadobrien.com.