Showing posts with label Kansas. Show all posts
Showing posts with label Kansas. Show all posts

Decarbonization of Industrial Facilities and the Crucial Role of Process Instrumentation and Valves

Decarbonization of Industrial Facilities and the Crucial Role of Process Instrumentation and Valves

In recent years, concerns about climate change have spurred a global push towards decarbonization, the reduction of greenhouse gas emissions, particularly carbon dioxide, from human activities. This movement involves transforming various sectors, including industrial facilities that account for a significant portion of global emissions. A critical aspect of this decarbonization drive is the adoption of advanced process instrumentation and valves, which are pivotal in improving efficiency, reducing energy consumption, and minimizing emissions. This article will explore the importance of process instrumentation and valves in decarbonizing industrial facilities and discuss the latest technological advancements.


The Importance of Process Instrumentation and Valves in Decarbonization


Enhancing Energy Efficiency

Process instrumentation and valves are critical components of industrial control systems that regulate and monitor processes in facilities such as power plants, refineries, and manufacturing plants. By providing accurate and real-time data on parameters such as pressure, temperature, flow, and level, these instruments enable operators to optimize processes and reduce energy consumption. Efficient and precise valve control also ensures energy use applies when and where needed, preventing wastage and reducing overall energy demand.


Reducing Greenhouse Gas Emissions

Advanced process instrumentation and valves help reduce greenhouse gas emissions by identifying inefficiencies and leaks in industrial processes. For instance, smart valves with built-in sensors can detect gas leaks, enabling operators to address the issue promptly and minimize emissions. Moreover, advanced control systems can optimize combustion processes in power plants and other facilities, reducing the amount of carbon dioxide and other greenhouse gases released into the atmosphere.


Facilitating the Integration of Renewable Energy

As industries transition towards renewable energy sources, process instrumentation, and valves play a crucial role in integrating these technologies into existing infrastructure. Advanced control systems can effectively manage the variable nature of renewable energy sources, such as solar and wind, ensuring a stable and reliable power supply. Additionally, smart valves can help balance the flow of energy between different sources, optimizing the system's overall efficiency.


Technological Advancements in Process Instrumentation and Valves


Digitalization and the Industrial Internet of Things (IIoT)

Digitalization and the Industrial Internet of Things (IIoT) are revolutionizing process instrumentation and valve technology. Integrating sensors, communication networks, and data analytics allows for real-time monitoring, predictive maintenance, and remote control of industrial processes. This interconnected system enhances efficiency, minimizes downtime, and reduces energy consumption, contributing significantly to decarbonization efforts.


Advanced Materials and 3D Printing

The development of advanced materials and the adoption of 3D printing technology in producing process instruments and valves have significantly improved performance, durability, and efficiency. For example, advanced alloys and ceramics can withstand extreme temperatures and pressures, reducing energy losses and improving the overall efficiency of industrial processes.


Machine Learning and Artificial Intelligence (AI)

Machine learning and artificial intelligence (AI) are increasingly utilized in process instrumentation and valve technology. These advanced algorithms can analyze data from sensors and other sources to predict equipment failures, optimize processes, and recommend maintenance activities. AI-driven process instrumentation and valves play a crucial role in decarbonizing industrial facilities by enhancing efficiency, minimizing downtime, and reducing energy consumption.


Decarbonizing industrial facilities is essential to mitigate climate change and achieve a sustainable future. Process instrumentation and valves play a vital role in this endeavor by enhancing energy efficiency, reducing greenhouse gas emissions, and facilitating the integration of renewable energy sources. As technology advances, adopting digitalization, advanced materials, and AI-driven solutions will further improve industrial processes' performance and environmental impact, accelerating the global shift towards decarbonization.


Mead O'Brien
(800) 874-9655

Industrial and Commercial Hot Water System Design, Fabrication, Installation, and Support

Industrial and Commercial Hot Water System Design, Fabrication, Installation, and Support

Choosing the right company specializing in engineering and integration services to design and install industrial and commercial hot water systems can significantly value your organization. You can realize this value through several key aspects, including expertise, cost savings, efficiency, safety, and scalability.


  1. Expertise: A specialized company has extensive knowledge in designing, installing, and maintaining large-scale hot water systems. Their engineers and technicians are highly skilled in selecting the right components, such as boilers, pumps, valves, and control instrumentation, ensuring a high-quality and reliable system that meets the specific requirements of your business.
  2. Cost savings: By partnering with an experienced company, you can save costs in several ways. First, you avoid making expensive mistakes during the design and installation phases. Second, the company's knowledge of the latest technologies and best practices allows them to design energy-efficient systems, reducing operational costs. Third, they can also help you take advantage of available incentives and rebates from utility companies and government programs.
  3. Efficiency: A well-designed hot water system ensures optimal performance and efficiency. By working with a specialized company, you benefit from their expertise in selecting and configuring the right components to achieve the highest possible efficiency, reducing energy consumption, lowering greenhouse gas emissions, and minimizing your environmental impact.
  4. Safety: Industrial and commercial hot water systems involve high pressures, temperatures, and potential hazards. By partnering with a company experienced in these systems, you ensure adherence to all safety protocols and regulations, which reduces the risk of accidents and liabilities.
  5. Scalability: As your business grows, your hot water system may need to be expanded or upgraded. An experienced company can design your system with scalability in mind, making it easier and more cost-effective to add capacity or make modifications in the future.
  6. Compliance: A specialized company knows the codes, standards, and regulations governing large industrial and commercial hot water systems, ensuring that your system is designed and installed in compliance with all applicable requirements, avoiding potential fines and penalties.
  7. Support and maintenance: A reliable partner can provide ongoing support, including regular maintenance, troubleshooting, and repairs, ensuring your hot water system remains in optimal condition throughout its lifecycle, reduces downtime, and extends the life of your investment.


Mead O'Brien offers engineering and integration services for  industrial and commercial hot water systems providing expertise, cost savings, efficiency, safety, scalability, compliance, and ongoing support. Partnering with Mead O'Brien leads to a more reliable, efficient, and cost-effective hot water system for your organization, while minimizing risks and ensuring compliance with relevant regulations.


For more information, contact Mead O'Brien. Call (800) 874-9655 or visit https://meadobrien.com.

The Role of Industrial Diaphragm Seals

The Role of Industrial Diaphragm Seals

Diaphragm seals protect industrial pressure gauges, transmitters, and other instruments in corrosive, high-temperature, and high-vibration applications for the following reasons:
  1. Protection against corrosive media: Diaphragm seals isolate the gauge from corrosive liquids and gases, preventing damage to the indicator and ensuring accurate readings.
  2. High-temperature resistance: Diaphragm seals use materials that can withstand high temperatures, such as PTFE and Monel, allowing the application of the gauge in high-temperature applications without affecting accuracy.
  3. Vibration resistance: In high-vibration applications, diaphragm seals reduce the vibration transfer to the gauge, reducing the risk of damage and ensuring accuracy.
  4. Media compatibility: The diaphragm material can be selected based on compatibility with the process media, ensuring accurate readings and preventing damage to the gauge.
  5. Longer service life: A diaphragm seal with a pressure gauge in corrosive, high-temperature, and high-vibration applications can extend the service life of the pressure gauge, reducing the need for maintenance and replacements.
Diaphragm seals transfer movement to pressure sensors through mechanical means. A flexible diaphragm is attached to the gauge's sensor and is separated from the process fluid by a filled chamber or a static pressure-transmitting liquid. As the process pressure changes, it causes the diaphragm to flex and transfer the movement to the gauge's sensor, which translates to the pressure reading.

Industrial diaphragm seals provide the "wetted" interface. Wetted refers to the parts of a diaphragm seal that come into contact with the measured process fluid. In industrial diaphragm seals, the wetted components consist of the diaphragm and the metal or ceramic components surrounding the diaphragm and are in direct contact with the process fluid. These parts must be compatible with the process media and withstand the fluid's corrosive and abrasive properties.

In conclusion, diaphragm seals provide a protective interface between the process media and the pressure gauge that ensures protection, accuracy, and increased longevity in challenging industrial applications, making them essential for industrial pressure gauges.

For more information, contact Mead O'Brien. Call (800) 874-9655 or visit https://meadobrien.com.

Benefits of Removable Reusable Insulation

Benefits of Removable Reusable Industrial Insulation

Unlike traditional insulation which is only used one time and then disposed, industrial reusable blanket insulation can be used multiple times and therefore it is more cost-effective over time. It can be also used to insulate equipment, valves, pipes, and ducts, as well as the walls, roof, and floor of a building. Additionally, it can be used as heat and fire barriers in certain situations.

Industrial reusable insulation refers to insulation material that is designed for use in industrial settings such as manufacturing facilities, power plants, and other heavy industrial buildings. It is typically made of durable materials such as fiberglass, ceramic, or mineral wool, which can withstand the harsh conditions of an industrial environment. Reusable insulation can be cut to fit any shape or size, making it easy to use in a variety of industrial applications.

Overall, industrial reusable insulation products are designed to help industrial facilities save energy, reduce costs, improve the comfort of the workers and also increase the safety.

Typical Reusable Insulation Products Are:
  • Acoustic Blankets & Shields
  • Acoustic Blankets For Fan And Blower Housings
  • Hydrophobic Insulation Blankets
  • Safety Fire Blankets
  • Safety Rain Shield Protective Enclosures
  • Safety Spray Shield
  • Safety Throw Blanket
  • Thermal Blankets
Reusable insulation can provide significant energy savings and cost savings in industrial manufacturing facilities. Here are a few advantages:
  • Improved energy efficiency: Blanket insulation helps to keep heat inside the facility during the winter and outside during the summer, which can significantly reduce the amount of energy needed to heat or cool the building.
  • Lower costs: Reusable blanket insulation is a cost-effective solution for insulation because it can be used multiple times. This reduces the cost of insulation over the life of the building.
  • Easy installation: Blanket insulation is simple to install and can be cut to fit any shape or size, making it easy to use in a variety of industrial settings.
  • Durable: Reusable blanket insulation is made of heavy-duty materials that can withstand the wear and tear of an industrial environment.
  • Safety: Insulation blanket can reduce the hazards of hot surfaces, electrical and fire hazards.
For more information, contact Mead O'Brien. Call (800) 892-2769 or visit https://meadobrien.com.

Jamesbury™ Quadra-Powr™ Spring Diaphragm Quarter Turn Actuators for Use in Both Modulating Control and On-Off Service

Jamesbury™ Quadra-Powr™ Spring Diaphragm Quarter Turn Actuators

Valves provide pressure reduction and flow control through piping systems and are critical to industries that form the backbone of the modern world. The valve actuator is crucial for valve operation. Actuators are powered devices that move valves between open and closed states. The valves can open or close depending on the movement it receives from an actuator; this motion is responsible for controlling the flow and pressure within an industrial system or process.

Jamesbury™ Quadra-Powr™ spring diaphragm QPX series quarter turn actuators are applicable for modulating control and on-off service. These actuators offer an exceptionally long cycle life and are well-suited to operate almost any type of rotary valve. The QPX actuator provides smooth and efficient quarter-turn valve operation and safe and reliable operation even when minimal supply pressure is available.

Exclusively developed for quarter-turn valve service, Quadra-Powr™ X spring-diaphragm actuators provide safe and reliable operation even when minimal supply pressures are available. Yet they can operate at pressures as high as 7 bar (100 psi).

These units operate by air, gas, water, oil, or other supply media compatible with the actuator's ductile iron/carbon steel casing and the Buna-N diaphragm reinforced with polyamide fabric. This unique spring-diaphragm actuator for rotary valves provides safe, smooth, and reliable valve actuation at minimal pressures and up to 100 psi (6.9 BAR). Quadra-Powr X torque outputs range from 15 to 796 Nm (11 to 587 ft-lbs), depending on actuator selection and available supply pressure.

Jamesbury™ Quadra-Powr™ Features:
  • Rolling diaphragm for minimum friction
  • Low friction bearings – factory lubricated for lifetime
  • Field reversible for spring to open or close simply by flipping actuator over
  • Safety contained springs prevent hazards of inadvertent ejection during maintenance
  • Corrosion resistant – two layer epoxy and polyurethane paint with stainless steel fasteners
  • Adjustable stops for both open and closed positions
  • Wide input pressure range – up to 7 bar (100 psi)
For more information, contact Mead O'Brien. Call (800) 874-9655 or visit https://meadobrien.com.

Industrial Actuators, Valves, and Positioners

Industrial Actuators, Valves, and Positioners

Valves regulate fluid flow to provide accurate control and safety in any given process system, and methods of adjusting valve position are always required.


Commonly, valves are operated with handwheels or levers, although some must be regularly opened, closed, or throttled. In certain conditions, it is not always practical to position valves manually; hence actuators are employed instead of hand wheels or levers. 


An actuator is a mechanism that moves or regulates a device, such as a valve. Actuators decrease the requirement for people to operate each valve manually. Valves using actuators can remotely control valve position, particularly crucial in applications where valves open and close or modulate fast and precisely. 


Pneumatic, hydraulic, and electrical actuators are the three fundamental types. 


  1. Pneumatic actuators employ air pressure to generate motion and are probably the most prevalent type of actuator utilized in process systems. 
  2. Actuators powered by a pressurized fluid, such as hydraulic fluid, are called hydraulic actuators. Typically, hydraulic actuators of the same size produce more torque than pneumatic actuators. 
  3. Electric actuators generate motion using electricity. Actuators usually belong to two broad categories: solenoid or motor-driven actuators. 


Actuators position valves in response to controller signals and can be positioned rapidly and precisely to accommodate frequent flow variations. The instrumentation systems that monitor and respond to fluctuations in plant processes include controllers. Controllers receive input from other instrumentation system components, compare that input to a setpoint, and provide a corrective signal to bring the process variable (such as temperature, pressure, level, or flow). 


You have a control valve when actuators pair with flow-limiting or flow-regulating valves. Generally speaking, control valves automatically restrict flow to provide accurate flow to a process to maintain product quality and safety. 


Control valves can be linear, where the stem moves the valve disk up and down like globe valves, or rotational. Rotary control valves include butterfly valves, which open or close with a 90-degree rotation. The pneumatic diaphragm and electric actuators are the most prevalent on linear and rotational control valves.


Some valves require long stem travel or substantial force to change position. A piston actuator's higher torque is preferable to diaphragm actuators in these situations. Examples of piston actuators are rack and pinion and scotch-yoke designs. 


Single-acting piston actuators control the air pressure on one side of a piston, and with higher air pressure, the piston moves within the cylinder and turns the valve. The air on the opposite side of the piston exits the cylinder via an air vent. With decreased air pressure, the spring expands, causing the piston to move in the opposite direction. 


If air pressure falls below a predetermined threshold or is lost, the spring will push the piston to the desired position, referred to as the "fail" position (open or closed). 


A double-acting piston actuator lacks a spring and has air supply ports on both ends of the cylinder. Increasing air pressure to the supply port moves the valve in one direction. Higher pressure air entering from the opposite supply port pushes the valve in the opposite direction. Filling the cylinder with air and releasing air from the cylinder is regulated by a device known as a positioner. 


Typically, the control of pneumatic actuators occurs from air signals from a controller. Some actuators react directly from a controller, for instance, a pneumatic 3-15 PSI controller output. Sometimes, a controller signal alone cannot counteract a valve's friction or the process media's fluid pressure. This situation requires a separate, high pressure air supply and modulating it with a pneumatic or electro-pneumatic positioner. These devices regulate a high pressure air supply to ensure that an actuator has enough torque to position a valve accurately. The positioner responds to a change in the controller's air, voltage, or current signal and proportions the high pressure air to the actuator. Connecting the actuator stem to the positioner is a mechanical linkage. This mechanical connection is also known as a feedback connection. The link moves as the actuator stem moves up, down, or rotationally. The location of the connection informs the positioner when sufficient movement coincides with the controller's air signal. The controller's signal transmits to the positioner instead directly to the actuator, and the positioner regulates the air supply provided to the actuator.


Like other process components, actuators are prone to mechanical issues. Since actuator issues can negatively impact the operation of a process, it is essential to be able to recognize actuator issues when they occur. Frequently, an operator can notice an actuator fault by comparing the valve position indication to the position specified by the controller. For instance, if the position indicator shows the valve closed, but the flow indicator on the controller indicates that flow is still passing through the valve, the valve seat and disc are likely worn, enabling leakage through the valve.


Because there are so many different styles and designs of actuators, positioners, and valves and so many industrial applications, the combination possibility matrix is vast. You must discuss your application with a knowledgeable, experienced valve expert. The success of your project in terms of product quality, system cost, maintenance, and safety depends upon it.


Mead O'Brien
(800) 874-9655

Setting the Foxboro/Schneider Electric IDP10-A Differential Pressure Transmitter for Measuring Flow


This tutorial explains the setup for the Foxboro / Schneider Electric differential pressure transmitter model IDP10-A when used in a flow monitoring application.

When you need the flexibility and performance of a customizable, intelligent transmitter but do not need a digital output signal, these transmitters give outstanding value at a low cost. 

The Foxboro® brand Model IDP10 is a two-wire d/p Cell® Transmitter with an analog output that enables accurate, dependable differential pressure measurement and transmits a 4 to 20 mA analog output signal. 

The IDP10 is a comprehensive series of d/p Cell, gauge, absolute, multirange, multivariable, and premium performance transmitters. All use field-proven silicon strain gauge sensors and standard top works. 

Included in this transmitter is the -A electronics module. It is a low-cost analog output transmitter with complete configurable capabilities. This transmitter offers the most ability at the lowest possible cost to you. It even allows you to re-calibrate to new calibrated ranges using the conventional LCD indication without the requirement for calibration pressure. 

It is intended for use in Division 1 hazardous locations and meets Division 2 standards. Versions that fulfill agency flameproof and zone criteria are also available.

For more information, contact Mead O'Brien. Call (800) 874-9655 or visit https://meadobrien.com.

The Armstrong VERIS Verabar®


Veris Verabar Mead O'Brien
The Armstrong Veris Verabar averaging pitot flow sensor provides unsurpassed accuracy and reliability. With its solid one-piece construction and bullet shape, the Verabar makes flow measurement clog-free and precise. Its unique sensor shape reduces drag and flow-induced vibration, and the location of the low-pressure ports eliminates the potential for clogging and improves signal stability.

Veris Verabar Flow

Veris Verabar Mead O'Brien
Verabar - Superior Signal Stability and Greater Resistance to Clogging

Clogging can occur in low-pressure ports in or near the partial vacuum at the rear of the sensor. The Verabar design finds the low-pressure ports on the sides of the sensor, forward of the fluid separation point, and turbulent wake area, virtually eliminating clogging and producing an extremely stable signal.

Verabar - Flow Coefficient
Verabar - Accuracy You Can Trust And the Data to Back It Up

The unique and exclusive breakthrough in improved accuracy derived from developing a verified theoretical model predicts the Verabar flow coefficients. The verified theoretical model eliminates the need for calibration tests to characterize the flow coefficients. Without such a model, the uncertainty of the flow coefficients dramatically increases, and expensive calibration is required. Empirical test data from independent laboratories verified the theoretical model and flow coefficients as a constant, independent of the Reynolds number and within ±0.5% of the predicted value. The Verabar Flow Test Report (ED-100) includes the theoretical model and test data derivation.

Verabar Flow Data


Verabar - Lower Drag and Extended Turndown

Golf balls fly farther because they have a dimpled surface that lowers aerodynamic drag. The grooves and roughness on the Verabar’s frontal surface apply the same principle. This simple design feature relieves the partial vacuum at the rear of the sensor, reducing the pressure drag and extending the accuracy and rangeability to very low velocities.



For more information about VERIS Verabar® contact Mead O'Brien. Call (800) 874-9655 or visit https://meadobrien.com.

Mead O'Brien Is Your Preferred Source for Institutional and Industrial Hot Water Systems and Equipment

Institutional and Industrial Hot Water Systems and Equipment

Mead O'Brien will assist you with turnkey steam and hot water generating systems for efficiency, energy savings, and emissions reduction. 


With their manufacturer partners Armstrong International, Lattner Boiler Manufacturing, Shannon Global Energy Solutions, Clark Reliance, and Laars Heating Systems, Mead O'Brien supplies complete equipment packages - including pumps, storage tanks, piping, condensate & steam traps, valves, level instruments, computerized control systems, and high-efficiency insulation. Mead O'Brien's expertise covers heating systems of any capacity. 


Mead O'Brien will also assist you in analyzing, designing, and installing boiler efficiency solutions with various fuel options that will reduce energy consumption and greenhouse gas emissions.


Mead O'Brien will professionally and expertly assist you with:


  • Commercial projects where the mechanical design takes advantage of a boiler's high turndown and condensing design for optimum hot water efficiency.
  • Commercial heating projects where hot water temperatures are to be above 160°F.
  • Industrial process applications that require high-pressure hot water.
  • Vertical Tubeless Boilers
  • Horizontal Firetube Boilers
  • Low-NOx Boilers
  • Electric Boilers
  • Steam Trap Surveys
  • Thermal Assessments
  • Hot Water System Surveys


Contact Mead O'Brien today to learn more. Call (800) 892-2769 or visit https://meadobrien.com.

Inflatable Seat Butterfly Valves - Posi-flate


The Posi-flate Inflatable Seat Butterfly Valve uses air pressure to inflate the seat against the disc and create a bubble-tight seal, resulting in minimal friction as the disc opens and closes. The Posi-flate inflatable seat automatically compensates for wear, providing longer valve life. 


The resilient seated butterfly valve forces the disc into the static seat, causing impingement between the disc and seat, resulting in excessive damage, premature wear, and valve leakage. 


The Posi-flate inflatable seated butterfly valve offers less friction, low torque, less wear, and longer valve life!


Unlike other valves that seal with friction, Posi-flate's unique butterfly valve uses an inflatable seat to seal with air pressure. Thus it requires less torque and a smaller actuator, resulting in lower overall valve cost. Plus, the seat automatically compensates for wear, providing longer valve life.


How Posi-flate Butterfly Valves Work


Closed, unsealed

As the valve rotates into the closed position, the disc makes only casual contact with the seat, reducing friction, wear, and torque requirements.


Closed, sealed

After the valve is closed, the seat inflates against the disc providing more sealing surface and an even pressure distribution against the disc.


Open, unsealed

Before the valve opens, the seat deflates. The disc is then free to rotate to the open position.


Posi-flate inflatable seated butterfly valve applications include:


  • Material Control and Cut-Off Valve Applications
  • Double Dump Valve Assembly Applications
  • Dryer Valve Applications
  • Outlet Valve Applications
  • Pneumatic Conveying Valve Applications
  • Vacuum Valve Applications


For more information about Posi-flate inflatable disc butterfly valves, contact Mead O'Brien at (800) 892-2769 or visit http://www.meadobrien.com.