Monday, October 16, 2017

Solving Humidification Problems in Campus Science Lab

HumidiClean humidifier
Background

Armstrong International’s representative affiliate, Mead O’Brien, visited Columbia College along with a local specifying engineer to determine a solution to the customer’s humidification problems in campus science labs.

The site was experiencing fluctuations in relative humidity levels due to having only one Dri-Steam GTS-600 (450lbs/hr.) installed. Because the unit was oversized for application, the swings in humidity were causing the relative humidity to exceed the spec.

Scope of Work

To meet the customer’s demand for a larger capacity, Armstrong International supplied two (2) Gas-Fired HumidiCleanTM humidifiers at 310lbs/hr. and header the units together to feed the AHU. The GFH-300s provided accuracy and turndown required to remain in spec.

Benefits

Columbia College recognized the real benefits of supplying two appropriately sized units to accomplish reliable and accurate levels of humidity in the science labs. The customer also has enjoyed the 82% efficiency rating of the GFH-300 as well as the modulated control of steam output. Because of Armstrong’s ionic bed technology, both units have required minimal cleaning and maintenance. Since installation, Columbia College has not experienced any issues with both units.

Monday, September 11, 2017

How to Use the Ashcroft 1305 Deadweight Tester

Ashcroft 1305 deadweight tester
The Ashcroft 1305 deadweight tester provide a precise means for generating pressure with high accuracy that can be used as a primary calibration standard. The unit's built-in shuttle valve provides the means to control the rate of pressure increase, while precision adjustment is accomplished with an integral micro vernier displacement valve. 

This video below provides an overview of how to use the the Ashcroft 1305.

For more information on Ashcroft products, contact Mead O'Brien at (800) 892-2769 or visit http://www.meadobrien.com.


Friday, September 8, 2017

Voltage Ranging Solenoid Valve Coils are Rewriting Industry Standards

Voltage Ranging Valves
Voltage Ranging Solenoid Valves (ASCO)
New power management technology is rewriting industry standards for reliability and power consumption of solenoid valve coils. The new technology solenoid valves accepts both AC and DC voltages while improving performance. Available in 2-way, 3-way and 4-way, these solenoid valves are designed to handle most fluid control applications.

The enhanced valves are designed to be drop in replacements for existing valves. There is no change to functional attributes such as flow, pressure, ambient & fluid temperatures or physical attributes such as envelope size and face-to-face dimensions. If you're looking to just switch out a coil, enhanced coil kits are direct replacements for the old coil kits.

Here are the benefits to end customers:


Lower Power Consumption
  • 1.0 watt (DC version) & 1.5 watts (AC/DC versions)
  • Lowers energy cost up to 80% compared to standard solenoid valves 
RoHS 2 Compliant
  • Satisfies CE Directives 2002/95/EC and 2001/65/EU (RoHS 2) for the restriction of hazardous substances 
Supervisory Current Compatible
  • Suitable for systems employing supervisory currents not exceeding the following drop-out currents:
    • 20mA (12-24V DC), 15mA (24-120V AC/DC) and 7mA (100-240V AC/DC) 
  • Also suitable with devices having leakage currents not exceeding the drop-out currents noted above. 
Broad Voltage Ranges Reduce Inventory
  • Available in 24-120V AC/DC, 100-240V AC/DC & 12-24V DC 
  • Covers hundreds of global voltage requirements
  • Simplifies product selection and reduces complexity
  • Lowers inventory cost by eliminating need to stock both AC & DC products
  • Includes 125VDC battery (AC/DC versions) & 24VDC battery (DC version) 
DC Performance Increased Up to 500% To Match AC Ratings 
  • Transition from AC to DC without sacrificing performance
  • Eliminates the need for separate AC & DC output cards
  • Simplifies control schemes 
Integrated Surge Suppression
  • Prolongs the life of the coil by suppressing external voltage spikes
  • Lowers system cost by eliminating the need for additional surge protection 
Fit For Use In Rugged and Demanding Environments
  • Wide ambient temperature range for hot and cold environments
  • Enclosure Types 1 through 4X for indoor and outdoor applications o Optional Class 1, Division 2 coils available for hazardous locations 
No AC Hum
  • Ideal for applications requiring quiet operation
Contact Mead O'Brien at (800) 892-2769 or visit http://www.meadobrien.com for more information.

Thursday, August 31, 2017

Direct Steam Injection Humidifier Replacement in Large Hospital

Direct Steam Injection Humidifier Replacement in Large Hospital
Direct Steam Injection Humidifier Replacement
at St. Louis Children's Hospital
The St. Louis Children’s Hospital is one of the premier children’s hospitals in the United States. It serves not just the children of St. Louis, but children and their families from across the world. The hospital provides a full range of pediatric services to the St. Louis metropolitan area and primary service region covering six states. As the pediatric teaching hospital for Washington University School of Medicine, the hospital offers nationally recognized programs for physician training and research. The hospital employees 3,000 people as well as 800 medical staff members. There are also 1,300 auxiliary members and volunteers on-site.

St. Louis Children’s Hospital was undergoing a significant renovation and determined that the original direct steam injection humidifiers that were installed over 30 years ago needed to be replaced. Within 30 years, they had only experienced minor issues due to the age and use of the humidifiers. Most issues were labeled as manifold o-ring leaks or actuator leakage (either seal kits or diaphragms).

St. Louis Children’s Hospital consulted with their local Armstrong representative, Mead O’Brien, and looked at using direct steam injection humidifiers with electric actuators versus the atmospheric steam generating humidifier. Due to the maintenance, space concerns, and, most importantly, the controllability, Mead O’Brien suggested direct steam injection humidifiers.

When replacing humidifiers during a renovation it is important to analyze the absorption distance. There are many different variables that can affect the absorption distance and, in this case, guidelines and regulations have changed over 30 years since original installation. The amount of outside air brought into the space directly affects the RH levels, and in the healthcare industry, the minimum requirement of fresh air has changed multiple times in the past 30 years. Because of this, some installations required the use of multiple manifolds to shorten the absorption distance.

During this first phase of the renovation, thirty-nine (39) new steam humidifiers were installed. Thirty-four more we supplied the following year..

In addition, the following Armstrong products were also installed:
  • Six Pressure Reducing Valves 
  • Three Electric Condensate Pumps 
  • One Armstrong Flo-Rite
  • Five VERIS Flow Meters
Because of the customer’s relationship with their local Armstrong representative, St. Louis Children’s Hospital received a quality solution that was designed to meet all of their needs and will be supported by Armstrong for many years to come.

Click this link to download the PDF version of this steam injection humidifier application note.

Tuesday, August 29, 2017

Hygienic Sight Flow Indicators for Pharmaceutical, Bio-pharmaceutical, and Food Processing

Hygienic Sight Flow Indicator
Hygienic Sight Flow Indicator
Jacoby-Tarbox, a division of Clark Reliance, manufactures a complete line of tubular and bulls-eye sight flow indicators manufactured specifically for pharmaceutical, bio-pharmaceutical, food, and other processing systems demanding cleanliness and maximum hygienic conditions.





Their tubular glass design allows full 360° view of the cylinder and they achieve controlled intrusion meeting ASME-BPE’s strictest requirements by employing:
  • ASME BPE dimensions and Design Principles
  • Precision-Bore borosilicate glass 
  • Tightly tolerance EHEDG inspired O-ring capture
Watch the video below for a more detailed understanding. You can download a brochure about these hygienic sight flow indicators here.


For more information, contact Mead O'Brien at http://www.meadobrien.com or call (800) 892-2769.


Monday, August 21, 2017

HART Communication Protocol - Process Instrumentation

HART process instruments
Process instrument with HART protocol (Foxboro)
The Highway Addressable Remote Transducer Protocol, also known as HART, is a communications protocol which ranks high in popularity among industry standards for process measurement and control connectivity. HART combines analog and digital technology to function as an automation protocol. A primary reason for the primacy of HART in the process control industry is the fact that it functions in tandem with the long standing and ubiquitous process industry standard 4-20 mA current loops. The 4-20 mA loops are simple in both construction and functionality, and the HART protocol couples with their technology to maintain communication between controllers and industry devices. PID controllers, SCADA systems, and programmable logic controllers all utilize HART in conjunction with 4-20 mA loops.

HART instruments have the capacity to perform in two main modes of operation: point to point, also known as analog/digital mode, and multi-drop mode. The point to point mode joins digital signals with the aforementioned 4-20 mA current loop in order to serve as signal protocols between the controller and a specific measuring instrument. The polling address of the instrument in question is designated with the number "0". A signal specified by the user is designated as the 4-20 mA signal, and then other signals are overlaid on the 4-20 mA signal. A common example is an indication of pressure being sent as a 4-20 mA signal to represent a range of pressures; temperature, another common process control variable, can also be sent digitally using the same wires. In point to point, HART’s digital instrumentation functions as a sort of digital current loop interface, allowing for use over moderate distances.

HART in multi-drop mode differs from point to point. In multi-drop mode, the analog loop current is given a fixed designation of 4 mA and multiple instruments can participate in a single signal loop. Each one of the instruments participating in the signal loop need to have their own unique address.

Since the HART protocol is a standardized process control industry technology, each specific manufacturer using HART is assigned a unique identification number. This allows for devices participating in the HART protocol to be easily identified upon first interaction with the protocol. Thanks to the open protocol nature, HART has experienced successive revisions in order to enhance the performance and capabilities of the system relating to process control. The standardization of “smart” implementation, along with the ability to function with the legacy 4-20 mA technology and consistent development, has made HART a useful and popular component of the process measurement and control industry framework.

Have a question about HART? Contact Mead O'Brien by visiting this link, or call
(800) 892-2769.

Sunday, August 13, 2017

The Basics of Process Control Instrument Calibration

Process Control Instrument CalibrationCalibration is an essential part of keeping process measurement instrumentation delivering reliable and actionable information. All instruments utilized in process control are dependent on variables which translate from input to output. Calibration ensures the instrument is properly detecting and processing the input so that the output accurately represents a process condition. Typically, calibration involves the technician simulating an environmental condition and applying it to the measurement instrument. An input with a known quantity is introduced to the instrument, at which point the technician observes how the instrument responds, comparing instrument output to the known input signal.

Even if instruments are designed to withstand harsh physical conditions and last for long periods of
time, routine calibration as defined by manufacturer, industry, and operator standards is necessary to periodically validate measurement performance. Information provided by measurement instruments is used for process control and decision making, so a difference between an instruments output signal and the actual process condition can impact process output or facility overall performance and safety.

Instrument Calibration LabIn all cases, the operation of a measurement instrument should be referenced, or traceable, to a universally recognized and verified measurement standard. Maintaining the reference path between a field instrument and a recognized physical standard requires careful attention to detail and uncompromising adherence to procedure.

Instrument ranging is where a certain range of simulated input conditions are applied to an instrument and verifying that the relationship between input and output stays within a specified tolerance across the entire range of input values. Calibration and ranging differ in that calibration focuses more on whether or not the instrument is sensing the input variable accurately, whereas ranging focuses more on the instruments input and output. The difference is important to note because re-ranging and re-calibration are distinct procedures.

In order to calibrate an instrument correctly, a reference point is necessary. In some cases, the reference point can be produced by a portable instrument, allowing in-place calibration of a transmitter or sensor. In other cases, precisely manufactured or engineered standards exist that can be used for bench calibration. Documentation of each operation, verifying that proper procedure was followed and calibration values recorded, should be maintained on file for inspection.

As measurement instruments age, they are more susceptible to declination in stability. Any time maintenance is performed, calibration should be a required step since the calibration parameters are sourced from pre-set calibration data which allows for all the instruments in a system to function as a process control unit.

Typical calibration timetables vary depending on specifics related to equipment and use. Generally, calibration is performed at predetermined time intervals, with notable changes in instrument performance also being a reliable indicator for when an instrument may need a tune-up. A typical type of recalibration regarding the use of analog and smart instruments is the zero and span adjustment, where the zero and span values define the instruments specific range. Accuracy at specific input value points may also be included, if deemed significant.

The management of calibration and maintenance operations for process measurement instrumentation is a significant factor in facility and process operation. It can be performed with properly trained and equipped in-house personnel, or with the engagement of highly qualified subcontractors. Calibration operations can be a significant cost center, with benefits accruing from increases in efficiency gained through the use of better calibration instrumentation that reduces task time.