Showing posts with label Nebraska. Show all posts
Showing posts with label Nebraska. Show all posts

Limitorque Fluid Power Systems (LFPS)

Limitorque Fluid Power Systems is a group of modular scotch yoke fluid power actuators designed to deliver maximum torque with the lowest possible displacement and overall size. These heavy-duty, fluid-powered valve actuators and control systems are design primarily for the oil and gas industry. The group is categorized into three major sub-groups:
  • Gas Powered Actuators - The Limitorque LDG direct gas actuator is designed to operate on high pressure pneumatic supply, including pipeline gases, nitrogen and any other equivalent high pressure source.
  • Hydraulic Actuators - LHS and LHH are Limitorque’s range of hydraulic, quarter-turn, scotch yoke actuators. Designed to meet or exceed the most current and stringent safety and reliability standards for application in the oil and gas industry LHS and LHH are suitable for on/off and modulating control of all quarter-turn valves. 
  • Pneumatic Actuators - Limitorque’s LPS and LPC are pneumatic quarter turn scotch yoke actuators, featuring a robust design suitable for heavy duty services, and among the longest design lifespans and maintenance intervals in the industry.
Download the Limitorque Fluid Power Systems PDF here.

Mead O'Brien
www.meadobrien.com
(800) 892-2769


Industrial Boiler and Burner Limit Control Switches

Ashcroft Limit Control Switch
Ashcroft Limit Control Switch
Designers and manufacturers of industrial boilers are focused on meeting regulatory and safety requirements when developing highly efficient burner management systems (BMS). BMS are responsible for startup, operation and shutdown of a burner boiler systems. BMS monitor temperature, pressure and flow and employs safety shutoffs to shut down the burner boiler if an unsafe condition occurs.

The following white paper describes safety standards for boilers and burners relating to pressure switches and controls.


Measuring the Flow of Vaporized Liquid Natural Gas

Flow control
Veris Accelabar installed on vaporized liquid natural gas line.
Application

A liquid natural gas plant in the Midwest needed to measure gas flow to heaters that vaporize LNG to gaseous natural gas for use during peak periods in the winter season. The company stores LNG in two 12,000,000-gallon tanks and uses gas-fired heaters to vaporize it as required to meet customer demand. For most of the year demand is low (1,000 SCFH); however, during the coldest winter months gas consumption jumps to 60,000 standard cubic feet per hour (SCFH) in a 3” sch 40 line at 80 psig/70° F.




Problem

The plant must account for the gas usage over the entire range as it is part of the operating cost during LNG vaporization, as well as when it is used for plant heating. The customer could not find one meter to accommodate the entire range accurately. The plant had attempted to measure the flow rate with a Roots turbine meter sized for the maximum flow rate, but could not get accurate flow readings at the low end of the measurement range, making it impossible to determine actual usage during the off-peak periods. In addition to accuracy limitations, turbine meters have moving parts that wear and require expensive maintenance. The customer’s operating cost was estimated and charged against the bottom line. In addition, as you can see from the photo, there was no straight run available which hindered a conventional meter’s ability to perform accurately.
Accelabar
Accelabar

Solution

A Model AF 3” 150-H-M Accelabar was installed immediately downstream of a pipe reduction, control valve and pressure regulator. The Accelabar had two Foxboro IDP50 high accuracy DP transmitters directly mounted to the top of the Accelabar sensor. Stacked outputs were required to accommodate the wide turndown in DP of 308.2” w.c. at max and 0.08” w.c. at min.

Results

The Accelabar performed as advertised with ±0.75% accuracy over the entire range of 1,000 to 60,000 SCFH—a flow turndown of 60:1. Because the Accelabar and transmitters have no moving parts to wear or seize, maintenance is minimal. The LNG supplier has found that the flow metering system is user friendly and easy to operate, especially since DP flow measurement is one of the most easily understood of any flow measurement technology available. To the LNG provider, this translates into improved material accountability and lower operating costs to increase profitability.

Reprinted with permission by Veris, a division of Armstrong International.

Configuration and Setting the Schneider Electric / Foxboro IMT30A Magnetic Flow Signal Converter

This video below provides instruction on setting the Schneider Electric / Foxboro Model IMT30A.

The electromagnetic signal converter IMT30A is a used for measuring volumetric flow in various kinds of applications that can be found in the water industry and food and beverage processing. The IMT30A can be used together with Foxboro flow sensors 8400A, 8500A, 9500A, 9600A and 9700A with outputs representing measured values for flow, mass and conductivity.

Industries
  • Water & Wastewater
  • Food & Beverage
  • Heating, Ventilation & Air Conditioning (HVAC)
  • Agriculture
  • Steel
Applications
  • Water and wastewater treatment Water distribution network Irrigation installation
  • Water abstraction
  • CIP cleaning stations
https://meadobrien.com
(800) 892-2769

Limitorque Fluid Power Systems (LFPS)

Limitorque Fluid Power Systems (LFPS) is the Flowserve Limitorque division that builds fluid power actuators, specifically pneumatic, gas, and hydraulic scotch yoke design cylinder valve actuators. These are used on larger, higher torque requirement valves primarily applied in the oil and gas industries.

GAS POWERED ACTUATORS
Limitorque gas actuator

The Limitorque LDG direct gas actuator is designed to operate on high pressure pneumatic supply, including pipeline gases, nitrogen and any other equivalent high pressure source. Based on Limitorque’s high efficiency scotch-yoke modules, the self-contained system includes both the gas powered actuation unit and the high pressure gas control circuit. This makes it a robust and efficient way of providing reliable pipeline valve automation, even when no external motive power supplies are present. Limitorque’s advanced design criteria together with the full pressure rated controls allow higher torque output within a smaller dimensional envelope, thus reducing gas use and exhaust, and limiting pipeline product waste and environmental impact.

HYDRAULIC ACTUATORS
Limitorque hydraulic actuator

LHS and LHH are Limitorque’s range of hydraulic, quarter-turn, scotch yoke actuators. Designed to meet or exceed the most current and stringent safety and reliability standards for application in the oil and gas industry LHS and LHH are suitable for on/off and modulating control of all quarter-turn valves. Limitorque scotch yoke actuators deliver reliable torque ranges up to 300 kNm (221 268 ft-lb) in a low displacement, compact dimensional envelope with a maximum allowable working pressure (MAWP) of 207 barg (3000 psig) for the LHS series and 345 barg (5000 psig) for the LHH series.

PNEUMATIC ACTUATORS
Limitorque pneumatic actuator

Limitorque’s LPS and LPC are pneumatic quarter turn scotch yoke actuators, featuring a robust design suitable for heavy duty services, and among the longest design lifespans and maintenance intervals in the industry. Limitorque’s high torque LPS (up to 500000 Nm / 369,000 ft-lbs) and compact LPC (up to 5500 Nm / 4056 ft-lb) are the actuators of choice for effective on/off, modulating and control applications of quarter-turn valves in all general and protective services, in the most severe environments.

For more information on Limitorque Fluid Power Systems, contact Mead O'Brien by visiting https://meadobrien.com or calling (800) 892-2769

Why Is Monitoring the Amount of Moisture in a Steam System So Critically Important?

Wet steam is a costly problem across many industries. It causes product quality issues with batch rejection, wet packs and wet loads in sterilizers. Wet culinary steam can make food grade quality of product impossible. Carbon dioxide in a system with wet steam creates carbonic acid that damages pipes. A slug of water causes water hammering, which is destructive and can be deadly. Wet steam causes many flowmeters to be inaccurate, so that if you buy steam from a third party, you may be paying for water rather than steam. Water abrades like sand in a steam pipe and will erode pipes, elbows, valves and other components. Wet steam reduces heat transfer. Wet steam can damage turbines. And wet steam causes thermal stress as condensate cools down.

In fact, steam quality typically refers to the amount of water in the steam, which is also known as dryness fraction. Saturated steam is a mixture of steam and water. The water is often in the form of un-vaporized micro droplets. Dryness fraction is a ratio. The mass of the steam to the mass of the biphasic mixture of water and steam. Part of the difficulty in measuring the steam dryness fraction is that steam systems are dynamic. The steams is moving through the components and conditions change second-by-second. Within this complex system there are many things that contribute to water in the steam. For example, the bursting bubbles from the surface of the boiling water expels small droplets into the flow of steam. Or if there is a sudden increase in demand for steam that reduces pressure above the water, lowering the boiling point and increasing the violence of bubbling. This is sometimes called priming or carryover. Other forms of carryover include water in the system, because the water level in the boiler is too high. Or high concentrations of impurities in the boiler water that reduce the surface tension and so increase the agitation of the water surface. Impurities can also cause the formation of a stable foam above the water surface. This foam causes slugs of water to be intermittently discharged from the boiler along with the steam. Even poor insulation in pipes and valves leads to water in the steam as heat is lost and steam condenses. A steam trap might fail closed, particularly at the bottom of a separator, increasing the amount of condensate in the pipes. The design of steam pipe work and steam traps may be inadequate to handle condensate, or a steam separator may be defective.
Steam QM-1
Armstrong Steam QM-1

Any of these things individually or in combination can cause a problem with dryness fraction. Monitoring the dryness fraction of steam has long been a manual process, time-consuming, inconsistent, unreliable, and presents inherent safety and accuracy risks. Control of your steam quality depends on having consistent, accurate, timely information, and that's where the Armstrong Steam QM-1 comes in.

The Armstrong steam quality monitor steam QM1 provides you with data logging and remote monitoring capabilities. The Steam QM-1 monitors and measures dryness fraction and alerts you of steam quality problems. The video below explains how.

With monitoring by the Steam QM-1 you can:
  • Manage process quality when injecting steam 
  • Ensure foodgrade quality of steam when producing culinary steam 
  • Check dryness of outsource steam 
  • Avoid water hammer 
  • Oversee traps and separators effectiveness 
  • Monitor boiler carryover 
  • Avoid erosion in valves regulators etc 
  • Protect turbine low pressure saturated steam stages 
For more information contact Mead O'Brien by visiting https://meadobrien.com or by calling (800) 892-2769.

Metso Neles Flow Control Solutions: Valves, Actuation, and Automation

Neles Flow Control SolutionsNeles Controls, a unit of Metso Automation, is a manufacturer of high quality rotary control valves,
on/off valves, actuators, positioners, emergency shutdown valves (ESD), digital valve position
control products and severe service specialty valve products.

Their product mix includes:
  • Control Valves
  • Globe Control Valves
  • On-Off Valves
  • ESD Valves, Engineered Valves
  • Smart Positioners 
  • Analog Positioners
  • Pneumatic Actuators
  • Electric Actuators
  • Limit Switches
Below is their comprehensive Flow Control Solutions catalog. You may review the embedded document, or download a PDF version of the Neles Flow Control Solutions here.

Mead O'Brien: Total Process Control Solutions Provider

As experts in valve automation, process instrumentation, steam systems and hot water systems, Mead O'Brien provides solutions to industrial companies in Missouri, Kansas, Nebraska, Iowa, Oklahoma, Arkansas, Texas Panhandle, Southern Illinois, Western Kentucky, and Southwest Indiana.

Specializing in Power, Refining, Chemical, Food & Beverage, Oil & Gas, Heavy Industrial, Water & Wastewater, and HVAC,  Mead O’Brien provides it's customers outstanding products, superior customer service, a team of highly skilled technicians, and decades of application experience.

These assets, in combination with their track record of successful outcomes and loyal customer base, positions Mead O'Brien as the perfect partner for all your process control equipment needs.

Give Mead O'Brien a call today.

https://meadobrien.com
(800) 892-2769

Electric Valve Actuation

Limitorque Electric Valve Actuator
Limitorque Electric Valve Actuator
Electric actuators use electrical power to actuate a valve. While most of the basic technology used in electric actuators has been around since the 1930s, decades of incremental improvement have significantly increased their functionality while dramatically reducing their cost. In recent years, these advances have reached a tipping point that makes electric actuators the first choice for a wide variety of applications.

Pros
  • Electric power is relatively inexpensive, easy to manage, and normally available to most industrial sites. The capital cost of electric actuators is typically cheaper per equivalent unit of torque/thrust output. They’re also cleaner and safer to operate. 
  • Electric actuators can provide superior positioning accuracy for control or modulating valve functions, which can include provisions for a high degree of process monitoring, data logging and information feedback. 
  • All necessary control functions are integral to electric actuators, reducing capital costs. 
  • Electric actuators significantly reduce control wiring costs by enabling distributed control. They simplify control logic by integrating control commands and feedback into customer SCADA or DCS systems. (Traditional electromechanical control systems require a dedicated wire for each command and feedback signal, leading to cable bundles with seven or more cores as minimum for each actuator. By contrast, a typical bus system can use one twisted pair wire in a daisy chain configuration to carry all required input and output signals.) 
  • As torque and thrust requirements increase, electric actuators weigh less and have smaller footprints compared to pneumatic actuators. 
  • Electric actuators may be combined with external gearboxes to produce extremely high output thrust and torque values.
Cons
  • With the exception of a few specific configurations, electric actuators can’t guarantee a fail-safe stroke but will “fail in the last position.” (Fail-safe stroke refers to an actuator’s ability to move a valve to a predefined safe position when power fails).
  • Electric actuators have more complex and sensitive components than the mechanical parts used in other types of actuators. Electronic technology also requires periodic refreshing to keep pace with component changes and improvements.
  • Beyond a certain size/torque range, electric actuators are less cost-effective and generally have limitations in operating speed when compared to pneumatic and hydraulic actuators.
  • In hazardous areas with potential exposure to explosive process media, electric actuators require more specific certifications and construction features to be considered safe for use.
Recommended applications

Electric actuation is the first choice for most oil and gas applications. They’re ideal for general process valve automation, non-critical applications, and light-duty modulating applications (generally up to 1200 starts per hour), although some can modulate continuously up to 3600 starts per hour.

Basic Set up of the Schneider Electric / Foxboro LG01 Guided Wave Radar Level Transmitter

Foxboro LG01 Guided Wave Radar Level TransmitterThe Foxboro Model LG01 Radar level measurement transmitter provides very accurate and reliable level measurement for the widest choice of installation and application.

Guided Wave Radar Technology 

Electromagnetic pulses are emitted and guided along a probe. These pulses are reflected back at the product surface. The distance is calculated by measuring this transit time. This device is perfect for high-end applications. It is suitable for applications with foam, dust, vapor, agitated, turbulent or boiling surfaces with rapid level changes.

This video demonstrates the quick set up of the instrument. 

What are In-line Drain Separators?

In-line (drain) separators
In-line (drain) separator.
(Armstrong)
Condensate in steam and air piping reduces thermal efficiency, causes water hammer, corrodes equipment such as valves and pipes, and causes other problems.

In-line (drain) separators separate condensate efficiently by using the centrifugal force of steam or air created by introducing it into a specifically shaped path. Because of the simple structure of the drain separators, pressure loss is minimized, enabling clean, dry steam or air to be fed to equipment.

When steam or air flow enters the drain separator, centrifugal force is generated in the fluid because of the device’s internal structural design. The fluid drains along the wall because of the difference in specific gravity with steam or air, eventually striking the baffle. The baffle guides the fluid to the drain outlet and to the trap, which drains it. As a result, small dirt particles and condensate are separated and removed from the system through the bottom drain.

Features:
  • Cyclone structure maximizes liquid separation efficiency
  • Pressure loss is extremely low
  • No moving parts means no breakdowns

Armored Liquid Level Gauges

Armored Liquid Level Gauge
Armored Liquid Level Gauge
(Jerguson)
Sight glass liquid level gauges are a mainstay of fluid processing operations that store raw materials, intermediate, or final product in tanks and other vessels. Having a direct visual indication of fluid level at the tank enhances safety and provides the all important data point about what is happening inside the tank.

These level gauges are installed on the exterior of the tank, exposed to whatever environmental or operational hazards existing or occurring at the location. Armored level gauges are appropriately named because of their construction. They are designed to resist impact and mechanical stress, as well as a range or environmental conditions.

Armored Liquid Level Gauge
Reflex Gauge
There are generally two versions of armored level gauges, reflex and transparent. The names refer to way in which light is handled by the gauge to reveal the liquid level. One manufacturer of armored level gauges and other level instruments, Clark-Reliance, provides a good description of the two gauge types.

"Jerguson® Reflex Level Gauges are ideal for clean total level indication applications for refining, petrochemical and general use applications. The reflex prisms are molded and polished to provide a crisp black-silver bi-color indication of the fluid level. As light passes into the reflex glass, if there is fluid present, the light continues through the glass and reflects off the back of the level gauge, providing a black color for fluid level regardless of the actual color properties of the process fluid. If fluid is not present, the light is reflected off the glass back towards the user, providing a shiny silver or mirror-like appearance to indicate vapor space."

Armored Liquid Level Gauge
Transparent Gauge
"Jerguson® Transparent Level Gauges are selected for interface level indication, dirty service or any application that requires the use of a shield to protect the glass from corrosion. A transparent gage is also known as a “thru-vision” gauge since the gauge is constructed with two pieces of flat polished glass assembled on opposite sides of the level gauge chamber. Since the user can see straight through the gauge, it is also easy to view the fluid properties, such as color, whereas this would not be possible with a reflex gauge. The use of an illuminator is always recommended on a transparent gauge."

Selecting an armored level gauge is an exercise in preparing for known and unknown events that might disable your ability to directly read fluid level. Armored level gauges are employed extensively in chemical, petrochemical, and other industries where reliability under challenging conditions is essential. Wherever there are mechanical hazards, an armored level gauge may ultimately prove to be cheap insurance against downtime or delay.

Share your level measurement challenges with a product application specialist. Combine their product expertise with your process knowledge to produce an effective solution.

Wireless Process Control Instrumentation

Wireless Process Control Instrumentation
Cost cutting is a fact of life for all industries. Whether it be for more efficient operations, or complying to current regulations, the need to build a better mouse trap is always present.

A very promising cost-cutting technology is wireless instrumentation. Wireless provides a compelling argument to change when you consider installation and overall cost effectiveness. Even more so when the application is located in a harsh environment, or where toxic or combustible situations exist. These robust devices provide critical performance data around the clock in the most inhospitable place in the plant, and operate through rain, wind, high temperatures and high humidity.

Untethered by cables and hard-wiring, wireless instrumentation is easier to deploy and monitor. Wireless transmitters are available for monitoring virtual all process variables such as pressure, temperature, level, flow, density, and acoustics. Networks of up to 100 (900 MHz) field devices can be created and then monitored by a single base radio or access point, with a typical communication range of over 1/2 mile. By communicating through the industry standard, Modbus, compatibility between device manufacturers is ensured.
Wireless Instrumentation
Wireless Instrumentation (Accutech and Foxboro)

The most obvious reason for choosing wireless over hard-wiring is the cost savings associated with running wires and cables. Savings estimates as high as 70% can be realized by deploying wireless field devices, compared to the same application using cables. Additional savings are realized when you consider that these devices use batteries and that the cost of adding to a network is borne only by the cost of the new device.

Wireless instruments also provide significant benefits in safety and compliance by keeping personnel out of hazardous areas. Areas that would require occasional human visitation can be safely monitored through remote monitoring.

So, what's the hold up? If the benefits are so clear, and the argument is so strong, why is there still reluctance to embrace wireless technology?

There are three main concerns:

Reliability
Wireless instrumentation must provide the same reliability (real and perceived) as traditional wired units. Every engineer, operator and maintenance person knows wires. Troubleshooting wires is easy, and understanding the failures of wires is basic - the wire is either cut or shorted. With wireless however, air is the communication medium and radio signals replace wires. Radio signals are more complicated than wires in terms of potential problems. For instance, signal strength, signal reflection and interference are all possible impediments to reliable links.

The good news is that radio frequency design is continuously improving, and the use of new and advanced technologies, such as frequency hopping receivers and high gain antennas, are enabling wireless devices to create highly reliable links.

Adapting to Existing Infrastructure
Wireless instrumentation networks have to adapt to the existing environment and the placement of structures and equipment. Most times it's just not practical to relocate equipment just to create a reliable wireless link. This can make it challenging to find the optimum location for a base radio or access point that is capable of providing a reliable communication link to your wireless instruments. Furthermore, accommodating the best strategy for one wireless device could negatively affect links with other devices on the same network.

The challenges of adaptability are being overcome by providing better frequency bands (such as 900 MHz). These bands provide longer range, the ability to pass through walls, and offer more saturating coverage. Other ways to overcome adaptability concerns are through the use of external, high gain antennas mounted as physically high as possible, and also by using base radios with improved receiving sensitivity.

Integration with Existing Communications
Engineers, operators, and maintenance crews are challenged by integrating wireless instrumentation networks with other, existing, field communications systems. The issues of having to manage and troubleshoot multiple networks adds levels of complexity to existing systems. This creates a conflict between the financial argument to adopt wireless instrumentation and the possible costs to increase the data gathering capabilities of an existing system. For instance, SCADA systems need to be able to handle the additional data input from wireless devices, but may not have the capacity. Adding the additional data capacity to the SCADA system can be expensive,  and therefore offset the wiring and cabling savings.

The financial argument for industry to adopt wireless instrumentation networks is persuasive, but its acceptance in the process control industry is slow. Reliability, acclimation, and integration are all challenges that must be overcome before widespread adoption occurs. Eventually though, the reality of dramatically reduced deployment and maintenance costs, increased safety, and improved environmental compliance will tip the scale and drive wireless as the standard deployment method.

Always consult with an experienced applications engineer before specifying or installing wireless instrumentation. Their experience and knowledge will save you time, cost, and provide another level of safety and security.

Mead O'Brien: Problem Solver, Innovator, and Best Total Cost Provider

Mead O’Brien specializes in valves & valve automation, steam & hot water products and systems, instrumentation products, skid designs, field services, surveys, assessments, and consulting. The extensive product and application knowledge possessed by the Mead O'Brien sales force projects to all or part of ten states in the Midwest which includes Missouri, Kansas, Nebraska, Iowa, Oklahoma, Arkansas, Texas Panhandle, Southern Illinois, Western Kentucky, and Southwest Indiana.

How Your Steam Trap Selection Affects Your Bottom Line Profits: Inverted Bucket Trap vs.Thermodynamic Trap

Steam Trap Selection
Below is a white paper, courtesy of Armstrong International, describing how steam trap selection affects profitability. This document compares Inverted Bucket Traps and Thermodynamic Traps.

The ability to monitor and maintain your facility’s steam trap population directly affects your bottom line. Armstrong’s Steam Testing and Monitoring Systems give you the means to achieve best practice steam system management by proactively monitoring your steam trap inventory.

For more information on Armstrong steam and hot water products, visit Mead O'Brien at https://meadobrien.com of call (800) 892-2769.


Process Instrumentation and Noise

Protect instrumentation from electrical noise.
Protect process instrumentation from
electrical noise.
Instrument noise, and eliminating instrument noise, is important to consider in process control instrumentation. Noise represents variations in process variable measurement that is not reflective of actual changes occurring in the process variable. Typically, electrical devices such as high voltage wiring, electric motors, relays, contactors, and radio transmitters are the primary sources of instrument noise.

No matter the cause for the process noise, the measurement signal in the process is being distorted and is not reflecting the true state of the process at a certain time. Accuracy and precision of process measurements are negatively affected by noise, and can also contribute to errors in control system. Controller output can reflect the noise affecting a process variable.

Grounding allows for the reduction of noise stemming from electrical systems. Shielded cabling and separating signal cabling from other wiring, as well as replacing and repairing sensors, allows for noise reduction. Low-pass filters are a way to compensate for noise, and much of the instrumentation used in process systems incorporates noise dampening features automatically. Determining the best kind of filter to use depends heavily on cut-off frequency, alpha value, or time constant.

The ideal low-pass filter would eliminate all frequencies above the cutoff frequency while allowing every frequency below the cut-off frequency to be unaffected. However, this ideal filter is only achievable mathematically, while real applications must approximate the ideal filter. They calculate a finite impulse response, and also must delay the signal for a bit of time. To achieve better filter accuracy, a longer delay is needed so that the filter computation “sees” a bit further into the future. The calibration of these filters heavily relies on the desired accuracy level of the process, while also taking specific steps in calibration to best fit a particular process.

Noise is important to mitigate because the noise observed while measuring the process variable can produce “chatter” in the final control element of a process. The resulting “chatter” increases the wear of mechanical control elements, such as valves, and will generate additional cost for the process as a whole. The filtered signal lagging behind the dynamic response of the unfiltered signal is a result of the filtered signal’s increased dead time, meaning that signal filters add a delay in sensing the true process state. The solution is to find a mid-point between signal smoothing and information delay, which allows for elimination of noise while not negatively affecting the speed by which information is delivered.

For question about any process control application, or challenge, visit https://meadobrien.com or call (800) 892-2769

What Are Isolation Rings?

Isolation Rings
Isolation Rings (Ashcroft)
Isolation Rings are used for protection of sensitive and expensive pressure instrumentation, such as pressure switches, transmitters, and transducers. They isolate the instrument from an aggressive or viscous process. The Isolation Ring is mounted inline with process piping and fits between the process line pipe flanges, similar to wafer butterfly valves.

The ring design includes ring has a  flexible inner cylinder that prevents process media from collecting in the instrument, and therefore assuring reliable and continuous pressure measurement. An integrated needle valve allows for fast and easy removal for instrument repair, replacement, or calibration without interrupting the process media flow. The needle valve can also be used for pulsation dampening.

Watch the video below for a more in-depth understanding of how Isolation Rings are installed and operate.

For more information, contact Mead O'Brien by calling (800) 892-2769 or visiting https://meadobrien.com.

Commissioning a Glass Level Gauge with a Safety Ballcheck Valve

Safety ballcheck valves are intended to safely isolate boiler and tank level gauges from the process media. Jerguson, a premier manufacturer of safety ballcheck valves and liquid level gauges has put together this video to explain how to commission a glass level gauge with a safety ballcheck valve.

https://meadobrien.com
(800) 892-2769


Steam Trapping and Steam Tracing Equipment

Inverted Bucket Steam Trap
Inverted Bucket Steam Trap
(Armstrong)
An efficient steam trap wastes less energy, which means you burn less fuel and reduce emissions. The results are energy savings and a cleaner, healthier environment. By helping companies manage energy, Armstrong steam traps are also helping protect the world we all share.

As a steam trap wears, it loses efficiency and begins to waste energy. But Armstrong inverted bucket traps last years longer than other traps. They operate more efficiently longer because the inverted bucket is the most reliable steam trap operating principle known.

Clearly, the longer an efficient trap lasts, the more it reduces energy wasted, fuel burned and pollutants released into the air. It’s an all-around positive situation that lets the environment win, too. Bringing energy down to earth in your facility could begin with a renewed focus on your steam system, especially your steam traps. Said another way: Zeroing in your steam traps is an easy way to pay less money for energy—and more attention to the environment.

Companies around the world are beginning to realize that rather than being separate challenges, energy and the environment are and have always been a single mission. And that quality management in one area will surely impact the other.

The catalog below should be utilized as a guide for the installation and operation of steam trapping equipment. Selection or installation should always be accompanied by competent technical assistance or advice. Armstrong and its local representatives are available for consultation and technical assistance. We encourage you to contact your Armstrong Representative for complete details.