Showing posts with label Armstrong. Show all posts
Showing posts with label Armstrong. Show all posts

Part 2: What Steam Is, How Steam is Used, and the Properties of Steam

Use of Steam
Steam is the gaseous phase (state) of water and has many domestic, commercial, and industrial uses. There are two categories of steam - wet steam and dry steam. In dry steam, all the water molecules stay in the gaseous state. In wet steam, some of the water molecules have released their energy (latent heat) and begin condensing into water droplets.

Steam, usually created by a boiler burning coal or other fuels, became the primary source of energy for mechanical movement during the industrial revolution, ultimately being replaced by fossil fuels and electricity.

Steam has many commercial and industrial uses. In agricultural, steam is used to remediate and sterilize soil. In power generation, approximately 90% of our electricity is created using steam as the working fluid to spin turbines. Autoclaves use steam for sterilization in microbiology labs, research, and healthcare facilities. Many commercial and industrial pieces of equipment are cleaned with steam. Finally, commercial complexes, campuses and military buildings use steam for heat and humidification.

The following video, the second part of a three part series titled “What Steam Is, How Steam is Used, and the Properties of Steam” provides the viewer with an exceptional basis to build from. Special thanks to Armstrong International who created the original work.



For more information on any industrial or commercial steam application, contact:

Mead O'Brien, Inc.
(800) 892-2769

Part 1: What Steam Is, How Steam is Used, and the Properties of Steam

Steam is the gaseous phase (state) of water and has many domestic, commercial, and industrial uses. There are two categories of steam - wet steam and dry steam. In dry steam, all the water molecules stay in the gaseous state. In wet steam, some of the water molecules have released their energy (latent heat) and begin condensing into water droplets.

Steam, usually created by a boiler burning coal or other fuels, became the primary source of energy for mechanical movement during the industrial revolution, ultimately being replaced by fossil fuels and electricity.

Steam has many commercial and industrial uses. In agricultural, steam is used to remediate and sterilize soil. In power generation, approximately 90% of our electricity is created using steam as the working fluid to spin turbines. Autoclaves use steam for sterilization in microbiology labs, research, and healthcare facilities. Many commercial and industrial pieces of equipment are cleaned with steam. Finally, commercial complexes, campuses and military buildings use steam for heat and humidification.

The following video, the first part of a three part series titled “What Steam Is, How Steam is Used, and the Properties of Steam” provides the viewer with an exceptional basis to build from. Special thanks to Armstrong International who created the original work.


For more information on any industrial or commercial steam application, contact:

Mead O'Brien, Inc.
www.meadobrien.com
(800) 892-2769

Mead O'Brien: Steam and Hot Water System Experts


Let Mead O’Brien help you create a sustainable Steam Trap Management Process!
  • Trained Survey Technicians 
  • Traps located and identified, tagged with SS tag #, and data logged with up to 27 fields of useful data per trap 
  • Executive summary, Failed trap report with steam & dollar losses, detailed Log sheets, and Recommendations are all provided in a professional report. 
  • Monitoring options presented for critical service applications 
  • Steam flow measurement design 
  • Heat recovery potential 
  • Training options in a live steam lab 
Realize the Savings Now!
  • Reduce steam & condensate losses 
  • Reduce loss of boiler chemicals 
  • Improve heat transfer performance 
  • Prevent coil and heat exchanger damage 
  • Minimize water hammer hazards 


Mead O’Brien and Armstrong, more than 85 years of Steam & Hot Water System Optimization

  • Steam Distribution
  • Process Heat Transfer and Control
  • Condensate Return
  • Heat Recovery Opportunities
  • Process, Ambient & Combustion Air
  • Steam Trap Surveys & Database Creation 
  • Humidification Assessment
  • Application issues
    • - Coil Freezing Issues
    • - Poor Heat Transfer & Steam Control - Water Hammer Issues
    • - High Backpressure
  • Steam & Condensate Measurements, Control & Monitoring

Learning Systems:

  • Armstrong University
  • Over 125 web-based courses 
  • Mead O’Brien Live Steam Lab
  • Content Tailored for Plant Need

Steam Trap Testing Guide for Energy Conservation

steam trap testing schedule
Annual steam trap testing schedule

Below is a steam trap testing guide (courtesy of Armstrong International) to maximize efficiency and conserve energy. This guide discusses:
  • Steam Trap Testing Procedure 
  • Tips On Listening 
  • Inverted Bucket 
  • Float & Thermostatic Trap 
  • Disc Trap 
  • Thermostatic Trap 
  • Sub-Cooling Trap 
  • Traps on Superheated Steam
CAUTION: Valves in steam lines should be opened or closed by authorized personnel only, following the correct procedure for specific system conditions. Always isolate steam trap from pressurized supply and return lines before opening for inspection or repair. Isolate strainer from pressurized system before opening to clean. Failure to follow correct procedures can result in system damage and possible bodily injury.

Steam System Condensate - Save Big by Managing its Proper Return

Recover condensate
Recover/return steam condensate
An often overlooked place to find savings in the operation of a manufacturing plant is the steam condensate return system. Returning condensate to the boiler feedwater system saves energy by returning pre-heated water, thus requiring less energy to maintain the feed water temperature. Furthermore, condensate is pre-treated, eliminating the need for additional expensive treatment.

Steam use in modern plants is everywhere. The condensate derived from its use is an asset that needs to be recycled. Older steam systems may have poor condensate return piping, or none at all. For these situations, creating or extending return lines should be considered. Steam traps in older systems are also suspect. Older traps are not as efficient or reliable as newer designs.

According to Armstrong International’s Senior Utility Systems Engineer Novena Iordanova, steam traps are very important in the condensate return/feedwater cycle. She believes the first purpose of a steam system is to deliver steam to a users defined area of need, and second, to return the resulting condensate back to the boiler. Unfortunately, in many cases the second goal is overlooked.

In older plants, a complete steam system evaluation, and many times an overhaul, is required. Professionals should be called in as plant maintenance staff typically doesn’t have the expertise required. The reasons for steam system degradation are common in the life cycle of plant operation. Over time, plant upgrades, new lines, expansion, and new equipment can have a significant detrimental effect on condensate return systems. The focus usually goes to the main headers and distribution, but condensate return doesn’t receive the same attention. The result can be a steam system that is no longer efficient - meaning high back pressures, water hammer, broken or freezing pipes, and leaks. At that point, the plant needs professional help for a complete system review.

steam trap
Steam trap
(courtesy of Armstrong)
The most important player in condensate recovery is the steam trap. Steam traps play the critical role of separating steam and condensate at the moment its formed. Traps discharge the condensate downstream to the boiler for reuse. Proper sizing, installation, and maintenance from the start will save huge amounts of money in terms of energy savings and maintenance time.

Frequent and regular inspections of steam traps are essential, but in reality they are many times postponed or rescheduled. Steam trap inspection is tough work. Traps are usually located in hard to see, hot, and tight areas. Over time, the difficulty (combined with the perceived low priority) degenerates to spotty inspection routines, higher trap fail rates and higher steam costs.

The good news is that steam trap monitoring systems now exist that can monitor the performance of steam traps and alert maintenance when things start to deteriorate. Steam trap monitoring systems report conditions that point to filature, and also alarm when things break down. Accordingly, maintenance is in a position to take preventive action, or make swift repairs. Any plant with a considerable number of stream traps should strongly consider deploying a steam trap monitoring system.

Steam trap monitoring systems monitor the thermal and acoustic characteristic of the trap and report any significant changes. Today many monitoring systems are wireless, and many operate on common plant communication systems such as WirelessHART, a communication protocol gaining worldwide acceptance.

Its important to mention here though, the on the most common mistake plant personnel make when it comes to their system is also one of  the most obvious - insulation. The use of high quality, well maintained insulation, installed to allow access to steam components is critical. The energy savings alone from well insulated pipes and traps is argument enough for making the initial time and dollar investment for proper insulating.

If you’re a plant manager and are looking for significant measurable and meaningful ways to lower energy costs, you must consider a well planned and well executed steam trap management program.