Showing posts with label flow control. Show all posts
Showing posts with label flow control. Show all posts

The Armstrong VERIS Verabar®


Veris Verabar Mead O'Brien
The Armstrong Veris Verabar averaging pitot flow sensor provides unsurpassed accuracy and reliability. With its solid one-piece construction and bullet shape, the Verabar makes flow measurement clog-free and precise. Its unique sensor shape reduces drag and flow-induced vibration, and the location of the low-pressure ports eliminates the potential for clogging and improves signal stability.

Veris Verabar Flow

Veris Verabar Mead O'Brien
Verabar - Superior Signal Stability and Greater Resistance to Clogging

Clogging can occur in low-pressure ports in or near the partial vacuum at the rear of the sensor. The Verabar design finds the low-pressure ports on the sides of the sensor, forward of the fluid separation point, and turbulent wake area, virtually eliminating clogging and producing an extremely stable signal.

Verabar - Flow Coefficient
Verabar - Accuracy You Can Trust And the Data to Back It Up

The unique and exclusive breakthrough in improved accuracy derived from developing a verified theoretical model predicts the Verabar flow coefficients. The verified theoretical model eliminates the need for calibration tests to characterize the flow coefficients. Without such a model, the uncertainty of the flow coefficients dramatically increases, and expensive calibration is required. Empirical test data from independent laboratories verified the theoretical model and flow coefficients as a constant, independent of the Reynolds number and within ±0.5% of the predicted value. The Verabar Flow Test Report (ED-100) includes the theoretical model and test data derivation.

Verabar Flow Data


Verabar - Lower Drag and Extended Turndown

Golf balls fly farther because they have a dimpled surface that lowers aerodynamic drag. The grooves and roughness on the Verabar’s frontal surface apply the same principle. This simple design feature relieves the partial vacuum at the rear of the sensor, reducing the pressure drag and extending the accuracy and rangeability to very low velocities.



For more information about VERIS Verabar® contact Mead O'Brien. Call (800) 874-9655 or visit https://meadobrien.com.

Foxboro IMT25 Flow Transmitter Quick Start Video and IOM - Everything You Need

Model IMT25
The Foxboro® brand Model IMT25 Intelligent Magnetic Flow Transmitter uses a pulsed dc technique to excite the Models 8000A, 8300, 9100A, 9200A, 9300A, and 2800 Magnetic Flowtube coils, and convert the low level signal voltage to a digital, 4 to 20 mA, or pulse output.

FEATURES
  • Digital precision, stability, and resolution ensure top measurement performance.
  • Remote communication with HART communication protocol. (For FOUNDATION Fieldbus protocol, refer to PSS 1-6F5 B.)
  • Remote configuration using PC-based configurator or HART Communicator.
  • Local configuration using optional integral keypad, with backlighted, 2-line, LCD display.
  • Scaled pulse or frequency output.
  • Unidirectional or bidirectional flow.
  • Analog output programmable for unidirectional, bidirectional, or multiple input range.
  • Relay outputs with programmable functionality for alarms.
  • Contact inputs with programmable functionality for remote operation.
  • Automatic and manual zero lock.
  • Online diagnostic help.
  • Software configuration and totals protected in nonvolatile memory in the event of power loss.
  • Compact single or dual compartment.
  • Enclosure meets NEMA 4X and IEC IP66.
  • Field test mode using Foxboro Model IMTSIM Magnetic Flowtube Simulator.

A Very Unique "No Straight Run Required" Flowmeter

VERIS Accelabar
VERIS Accelabar Detail
The VERIS Accelabar® is a unique flow meter that combines two differential pressure technologies to produce performance never before attainable in a single flow meter.

The VERIS Accelabar® is capable of measuring gases, liquids, and steam at previously unattainable flow rate turndowns—with no straight run requirements.

No Straight Run Required

The VERIS Accelabar® can be used in extremely limited straight run piping configurations. All necessary straight run is integral to the meter. The stabilization and linearization of the velocity profile within the throat of the nozzle eliminates the need for any upstream or downstream pipe runs.

Read the document below for more information or download the VERIS Accelabar® PDF from Mead O'Brien's website here.

What are Magnetic Flowmeters and How Do They Work?

Magnetic Flowmeter
Magnetic Flowmeter
(courtesy of Foxboro Schneider Electric)
Crucial aspects of process control include the ability to accurately determine qualities and quantities of materials. In terms of appraising and working with fluids (such as liquids, steam, and gases) the flowmeter is a staple tool, with the simple goal of expressing the delivery of a subject fluid in a quantified manner. Measurement of media flow velocity can be used, along with other conditions, to determine volumetric or mass flow. The magnetic flowmeter, also called a magmeter, is one of several technologies used to measure fluid flow.

In general, magnetic flowmeters are sturdy, reliable devices able to withstand hazardous environments while returning precise measurements to operators of a wide variety of processes. The magnetic flowmeter has no moving parts. The operational principle of the device is powered by Faraday's Law, a fundamental scientific understanding which states that a voltage will be induced across any conductor moving at a right angle through a magnetic field, with the voltage being proportional to the velocity of the conductor. The principle allows for an inherently hard-to-measure quality of a substance to be expressed via the magmeter. In a magmeter application, the meter produces the magnetic field referred to in Faraday's Law. The conductor is the fluid. The actual measurement of a magnetic flowmeter is the induced voltage corresponding to fluid velocity. This can be used to determine volumetric flow and mass flow when combined with other measurements.  

The magnetic flowmeter technology is not impacted by temperature, pressure, or density of the subject fluid. It is however, necessary to fill the entire cross section of the pipe in order to derive useful volumetric flow measurements. Faraday's Law relies on conductivity, so the fluid being measured has to be electrically conductive. Many hydrocarbons are not sufficiently conductive for a flow measurement using this method, nor are gases.

Magnetic Flowmeter and transmitter
Magnetic Flowmeter and controller.
(courtesy of Foxboro Schneider Electric)
Magmeters apply Faraday's law by using two charged magnetic coils; fluid passes through the magnetic field produced by the coils. A precise measurement of the voltage generated in the fluid will be proportional to fluid velocity. The relationship between voltage and flow is theoretically a linear expression, yet some outside factors may present barriers and complications in the interaction of the instrument with the subject fluid. These complications include a higher amount of voltage in the liquid being processed, and coupling issues between the signal circuit, power source, and/or connective leads of both an inductive and capacitive nature.

In addition to salient factors such as price, accuracy, ease of use, and the size-scale of the flowmeter in relation to the fluid system, there are multiple reasons why magmeters are the unit of choice for certain applications. They are resistant to corrosion, and can provide accurate measurement of dirty fluids ñ making them suitable for wastewater measurement. As mentioned, there are no moving parts in a magmeter, keeping maintenance to a minimum. Power requirements are also low. Instruments are available in a wide range of configurations, sizes, and construction materials to accommodate various process installation requirements. 

As with all process measurement instruments, proper selection, configuration, and installation are the real keys to a successful project. Share your flow measurement challenges of all types with a process measurement specialist, combining your process knowledge with their product application expertise to develop an effective solution.